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ABSTRACT

Large language models (LLMs) have recently achieved impressive
results in speech recognition across multiple modalities, including
Auditory Speech Recognition (ASR), Visual Speech Recognition
(VSR), and Audio-Visual Speech Recognition (AVSR). Despite this
progress, current LLM-based approaches typically address each task
independently, training separate models that raise computational and
deployment costs while missing potential cross-task synergies. They
also rely on fixed-rate token compression, which restricts flexibility
in balancing accuracy with efficiency. These limitations highlight
the need for a unified framework that can support ASR, VSR, and
AVSR while enabling elastic inference. To this end, we present Omni-
AVSR, a unified audio-visual LLM that combines efficient multi-
granularity training with parameter-efficient adaptation. Specifically,
we adapt the matryoshka representation learning paradigm to
efficiently train across multiple audio and visual granularities,
reducing its inherent training cost. Furthermore, we explore three
LoRA-based strategies for adapting the backbone LLM, balancing
shared and task-specific specialization. Experiments on LRS2 and
LRS3 show that Omni-AVSR achieves comparable or superior
accuracy to state-of-the-art baselines while training a single model
at substantially lower training and deployment costs. The model
also remains robust under acoustic noise, and we analyze its scaling
behavior as LLM size increases, providing insights into the trade-off
between performance and efficiency.

Index Terms— Audio-Visual Speech Recognition, Multimodal
LLMs, Matryoshka Representation Learning

I. INTRODUCTION

Auditory Speech Recognition (ASR) [1]—[3]] often degrades in
noisy environments such as crowded areas or subways. To address
this limitation, Audio-Visual Speech Recognition (AVSR) [4]-[6]
incorporates visual cues, such as lip movements, which remain
unaffected by acoustic noise, thereby enhancing recognition robust-
ness and accuracy. Early AVSR methods relied on modality-specific
encoders and handcrafted fusion strategies [[7]-[9]]. The introduction
of Transformers [10] significantly advanced performance [[11]-[|13],
spurring research into multimodal learning paradigms such as self-
supervision [14]]-[16], ASR-to-AVSR distillation [[17]], [[18]], and
cross-modal complementarity [19], [20].

More recently, Multimodal Large Language Models (MLLMs)
have demonstrated that integrating modalities such as vision and
speech significantly extends the capabilities of LLMs, yielding state-
of-the-art results across diverse tasks [21]|-[26]]. Building on this
progress, several studies have applied LLMs to ASR, Visual Speech
Recognition (VSR), and AVSR, with promising results [27]-[32].

However, most existing approaches treat each task in isolation,
training separate models for ASR, VSR, and AVSR. This not only
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increases computational cost and complexity but also overlooks
potential synergies across tasks. In contrast, studies across multiple
domains have demonstrated the feasibility of unified multi-task
multimodal LLMs [33]—-[37]]. While some attempts have been made
to unify ASR, VSR, and AVSR, these either rely on costly student-
teacher pseudo-labeling frameworks [38| or underperform compared
to task-specific models [39], [40].

Motivated by these limitations, we introduce Omni-AVSR, a unified
audio-visual LLM capable of performing ASR, VSR, and AVSR
within a single framework. To adapt the backbone LLM to all
tasks in a parameter-efficient manner, we propose three LoRA-
based methods. Furthermore, we adapt and optimize the matryoshka
representation learning paradigm [32f], [41]], [42] for our setting,
enabling efficient multi-granularity training while mitigating its
inherent computational cost. This allows the number of tokens to be
dynamically adjusted at inference according to resource availability
and task requirements. To the best of our knowledge, Omni-AVSR
is the first audio-visual LLM that supports ASR, VSR, and AVSR
jointly while enabling elastic inference under a single set of weights.

Our contributions are summarized as follows: (1) We provide a
comprehensive evaluation of Omni-AVSR on the LRS2 and LRS3
benchmarks, showing that it achieves comparable or superior WER
results across all three tasks. Unlike prior methods that support only
joint ASR-VSR-AVSR within a single model, only multi-granularity,
or neither, Omni-AVSR simultaneously supports both within a single
framework, substantially reducing training and deployment costs.
(2) We demonstrate that Omni-AVSR remains competitive with state-
of-the-art methods under both clean and noisy conditions. (3) We
conduct scaling experiments to analyze the trade-off between LLM
size, performance, and computational efficiency.

II. OMNI-AVSR

The goal of Omni-AVSR is to train a single unified LLM-based
model capable of performing ASR, VSR, and AVSR. At the same
time, it enables flexible control of audio—visual granularity at
inference according to resource constraints. In this way, Omni-AVSR
supports multiple modalities and granularities within a single set of
weights, while reducing training and deployment costs and achieving
performance on par with, or even surpassing, state-of-the-art models
trained independently for specific tasks or granularities.

Following prior audio-visual LLMs [27]-[29]], [32], Omni-AVSR
comprises pre-trained audio and video encoders, projection layers,
and an LLM backbone (see Fig. E}i). In the next sections, we detail
how Omni-AVSR is endowed with 1) explicit control over audio-
visual granularities during inference and 2) the ability to jointly
support ASR, VSR, and AVSR within a single model.
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(a) Omni-AVSR Overview

(b) Omni-LoRA Variants

Fig. 1: Overview of (a) the proposed Omni-AVSR model and (b) its Omni-LoRA variants. Audio and video inputs are encoded by pre-trained
modality-specific encoders and compressed by applying selected audio and video rates before projection into the LLM space. Omni-AVSR
explores three LoRA-based LLM adaptation strategies: 1) Omni-LoRA-S defines a single LoRA module for both ASR, VSR, and AVSR; 2)
Omni-LoRA-T dedicates task-specific LoRAs; 3) Omni-LoRA-ST makes use of both a shared LoRA and task-specific LoORA modules.

II-A. Multi-Granularity via Efficient Matryoshka Training

Given an audio waveform a and its corresponding lip movement
video v, we process them with a pre-trained audio encoder (e.g.,
Whisper [43]]) and video encoder (e.g., AV-HuBERT [14]) to
obtain audio and visual token sequences, Z® and Z", respectively.
Reducing token granularity lowers computational cost and improves
efficiency when feeding audio—visual tokens into an LLM. In AVSR,
temporal continuity across modalities creates redundancy, yet most
compression methods rely on fixed rates, limiting adaptability to
performance and resource trade-offs [27]-[29]. While finer-grained
tokens enhance recognition accuracy, they substantially increase
inference cost due to the quadratic complexity of Transformers.

To address this, Llama-MTSK [32] exploits the matryoshka
representation learning (MRL) principle [42] to flexibly control
audio-visual granularity at inference time based on user requirements.
During training, token sequences at varying granularities are
generated by applying G audio compression rates {a1,az, - ,ac}
and L video compression rates {v1, vz, -+ , v} to the input streams.
For AVSR, each of the resulting G - L audio-visual sequences is fed
to the LLM, requiring G - L forward/backward passes per batch.

However, when extended to Omni-AVSR, which must also support
ASR and VSR, the cost grows further: G passes for ASR, L for VSR,
and G-L for AVSR. This leads to prohibitive computational overhead
and potential interference among multiple objectives. To overcome
this limitation, we introduce a key modification: during training,
we randomly select one audio rate a; and one video rate v; at each
iteration, yielding compressed sequences Z“* and Z"7. This reduces
the number of forward/backward LLM passes to only three, one per
task, instead of G4 L+ G-L. The resulting compressed sequences are
then passed through modality-specific projection layers to match the
LLM embedding dimension and concatenated with task-specific text
tokens XT, where ¢ € {ASR, VSR, AVSR} and X? encodes both
the task prompt and the transcription. Therefore, we obtain: Zasg =
[Z%, Xps]s Zvsk = [2"7, X\sg], and Zavsr = [Z%, Z"7, X pvsl]-
This strategy preserves the flexibility of MRL at inference while
substantially reducing its training cost.

II-B. Joint ASR-VSR-AVSR Training Formulation

Omni-AVSR is trained by averaging the auto-regressive next
token prediction loss for each task for each input data. The
LLM predicts the response Y = {y;}5_, conditioned on the
multimodal input tokens, where S represents the number of tokens
of the ground truth transcription. Accordingly, for each task-specific
sequence Z:, the probability of the target Y is computed by
p(Y|Z:) = Hlepo(ys|zt,y<s), and the corresponding loss is
defined as £; = —log p(Y|Z:), where y<s is the generated output
sequence up to token s — 1, 6 is the trainable parameters, and
t € {ASR, VSR, AVSR}. Overall, the final objective we train on is:

Lomnt = AasrLasr + AvsrLvsr + AavsrLAvsR, (1)
where Aasr, Avsr, Aavsr are task-specific weights.

II-C. Efficient LLM Adaptation via Omni-LoRA

In Omni-AVSR, following prior works [27]-[29], [31], [32], the
pre-trained LLM is kept frozen while low-rank LoRA modules [44]
are employed to parameter-efficiently fine-tune it. Given our multi-
task setting, we explore three configurations: 1) Omni-LoRA-S, 2)
Omni-LoRA-T, and 3) Omni-LoRA-ST, illustrated in Fig. ma These
variants allow us to systematically investigate the trade-off between
parameter sharing and task specialization within Omni-AVSR.

The Omni-LoRA-S variant employs a single Shared LoRA module
to adapt the query and value projection matrices of each LLM self-
attention layer across ASR, VSR, and AVSR tasks. Specifically,
a frozen pre-trained weight matrix W is decomposed into low-
rank factors with down-projection parameters Wyown € R?X" and
up-projection parameters W, € R"™%, where r < d. Given an
input Z; for task ¢, the output is computed as: O, = Z.;W +
(ZtWiown)Waup, where « is a scaling hyperparameter.

The Omni-LoRA-T variant instead defines separate Task-specific
LoRA modules, with parameters Wj,,,, and W,, specialized
to each task. The output is then computed as: O, = Z:W +
A(ZtWpun )W, Finally, Omni-LoRA-ST combines both Shared
and Task-specific LoRA modules, yielding: O, = Z:W +



Table I: ASR, VSR, AVSR results in terms of WER (%) across
different audio and video compression rates (e.g., (4,2)). The best
results for each specific task, rate and dataset are shown in bold.

Method ASR VSR AVSR Avg

4 a6 @ (6 (4,20 4,5 (16,2) (16,5
LRS2 Dataset

Llama-AVSR |27 33 4.3 269 300 2.5 2.6 39 4.6 9.8
Llama-MTSK |32] 2.5 39 267 285 25 2.5 3.7 4.0 9.3
_ Llama-MT "~ 26 41 272 288 25 24 35 39 94
Omni-AVSR-S 2.8 5.0 27.8 285 2.7 2.6 3.8 4.0 9.6
Omni-AVSR-T 2.7 4.5 26.8 283 2.6 2.7 3.9 4.0 9.4
Omni-AVSR-ST 2.7 4.8 27.8 295 2.5 2.7 3.9 4.2 9.8
LRS3 Dataset
Llama-AVSR [27 1.1 2.0 274 295 1.1 1.2 2.0 2.1 8.3
Llama-MTSK [32] 1.0 20 269 278 1.0 1.0 1.9 2.0 8.0
_Llama-MT "~ 10 21 272 284 10 10 _ 18 19 80
Omni-AVSR-S 1.1 24 266 274 1.1 1.0 1.9 2.0 7.9
Omni-AVSR-T 12 1.9 26.7 218 1.2 12 2.0 2.2 8.0
Omni-AVSR-ST 12 2.0 26.8 27.1 1.0 1.1 1.8 1.9 7.9

Table II: Computational cost analysis in terms of 1) the number of
trained models and 2) LLM forward/backward passes required to
cover all tasks and rates in training. Here, T denotes the number
of tasks, while C4/C'y denotes the number of audio/video rates.

Method # Trained Models # LLM F/B Passes

Llama-AVSR [27] CA + CV + CACV CA + CV + CACV

Llama-MTSK [32] T Ca+Cy +CayCy

Llama-MT CaCv_ _ __ _ T(CaCY)_ _ .
Omni-AVSR 1 T

A(ZiWaown)Wap + a(ZeWpwn)W.,. During training, Omni-
LoRA-T and Omni-LoRA-ST activate all task-specific modules. At
inference, however, only the module corresponding to the selected

task is used, ensuring efficiency.

III. EXPERIMENTS AND RESULTS
III-A. Experiment Settings

Datasets. We conduct experiments on LRS2 [45] and LRS3 [46]
datasets. LRS2 includes 225 hours of footage from BBC programs.
LRS3 contains 433 hours of English video clips from TED talks.

Pre-Processing. We follow [[18], [27], [32] for the datasets pre-
processing. For video, we crop the mouth region of interests (ROIs)
through a bounding box of 96 x 96. Each frame is normalised by
subtracting the mean and dividing by the standard deviation of the
training set. Audio data undergo z-normalisation per utterance.

Omni-AVSR Details. We use AV-HuBERT Large as the visual
encoder and Whisper medium as the audio encoder. The projection
layers consist of two linear layers with a ReLU activation in between.
For the LLM backbone, we adopt LLaMA 3.2-1B [47] in our main
experiments. Following prior work [27], [28], [32]], both the LLM
and video encoder are fine-tuned via LoRA modules applied to the
query and value projection matrices with rank 64. We evaluate three
Omni-AVSR variants, depending on the LoRA configuration used:
Omni-AVSR-S, Omni-AVSR-T, and Omni-AVSR-ST.

Training/Inference Details. Following [18]], [27]], [32], we
augment visual inputs through horizontal flipping, random cropping,
and adaptive time masking, while for audio we only apply adaptive
time masking. We define the textual prompts as in [27], [28], [32]:
“Transcribe {task_prompt} to text.”, where task_prompt
€ {“speech”, “video”, “speech and video”}. We set A\asr =
Aavsk = 1 and Avysg = 1.5. We train our Omni-AVSR models for 8
epochs with the AdamW optimizer with cosine annealing scheduler
and weight decay set to 0.1 using NVIDIA L40 GPUs. The learning

Table III: AVSR results on LRS3 across acoustic noise conditions.

SNR (dB)
5 2.5 0 -2.5 -5

Method

Compression rates: (4,2)
Llama-AVSR [27] 26 4.1 48 121 19.1
Llama-MTSK [32] 2.5 39 48 11.7 185
Llama-MT 26 39 44 111 178

Omni-AVSR-ST 25 38 44 114 180

Compression rates: (16,5)
Llama-AVSR [27] 42 58 6.5 149 22.1
Llama-MTSK [32] 38 55 60 140 205
Llama-MT 37 5.1 6.0 134 20.1

Omni-AVSR-ST 39 53 59 135 195

Table IV: Comparison with state-of-the-art methods using a single
model for ASR, VSR, and AVSR on LRS3. fu-HuBERT is trained
on LRS3 and VoxCeleb2, totaling 1759 hours.

Train  Train WER |
Method Par. (M) Hours ASR VSR AVSR
u-HuBERT [39]* 325 1759 15 291 13
MultiAVSR [40] 274 433 24 311 25
USR [38] 171 433 19 343 16

Omni-AVSR-ST (4,2) 58 433 1.2 268 1.0
Omni-AVSR-ST (16,5) 58 433 20 271 19

rate is le-3. For decoding, we use beam search with a beam width
of 15 and temperature of 0.6.

Audio-Visual Granularities. For fair comparison with prior work
[32], we adopt the same compression rates, chosen to capture a
spectrum of efficiency—performance trade-offs at inference. Specifi-
cally, we use {4,16} for ASR, {2,5} for VSR, and their Cartesian
product for AVSR, yielding four audio-visual configurations. Token
compression is performed via average pooling [32].

Baselines. As shown in Tables [[|and [T} we compare Omni-AVSR
variants with three main approaches: 1) Llama-AVSR [27], which
trains a separate model for each task and compression rate; 2)
Llama-MTSK [32]], which enables elastic inference by training on
multiple rates but only within a single task; 3) Llama-MT, which
supports multi-task (MT) training across ASR, VSR, and AVSR
but requires a separate model for each rate. In contrast, Omni-AVSR
unifies both elastic inference and multi-task learning within a single
framework, subsuming these baselines as special cases. Additional
comparisons with AVSR sota methods are provided in Section [[II-C

III-B. Main Results

Table [ reports the ASR/VSR/AVSR results of our three
Omni-AVSR variants on LRS2 and LRS3. On LRS2, the task-
specific variant Omni-AVSR-T achieves the best performance, while
on LRS3 all three variants yield comparable results. This difference
is likely due to the larger training set of LRS3, which enables
lower WERs overall, particularly for ASR and AVSR. Compared
with the baselines, we observe the following: (1) all Omni-AVSR
variants consistently outperform Llama-AVSR, which requires a
separate model per rate and task; (2) Omni-AVSR-T on LRS2, and
all three variants on LRS3, match or surpass Llama-MTSK and
Llama-MT, with Omni-AVSR-S and -T attaining average WERs
as low as 7.9 across tasks on LRS3; (3) task-wise, Omni-AVSR
particularly benefits VSR; and (4) performance trends remain
consistent across compression rates. These results demonstrate that
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Fig. 2: Left: Comparison of Omni-AVSR-ST with state-of-the-art AVSR methods in terms of WER, activated parameters, and training data
hours on LRS3. Right: Scaling trend of Omni-AVSR-ST when we increase the LLM size on LRS3.

Omni-AVSR delivers competitive or superior accuracy while unifying
elastic inference and multi-task learning within a single framework.

Beyond delivering strong recognition performance, Omni-AVSR
also offers significant computational advantages, as summarized
in Table [l (1) Omni-AVSR requires training only a single model,
independent of the number of tasks 7' (ASR, VSR, and AVSR in
our case, so 7' = 3) and the number of audio C'4 and video Cy
compression rates (C4 = C'v = 2 in our setup). In contrast, the
other three baselines train multiple models that scale with the number
of compression rates (Llama-AVSR and Llama-MT) or with the
number of tasks (Llama-MT). (2) We further compare the methods
in terms of the number of forward/backward passes required over
the LLM, since this constitutes the dominant computational cost
during training. Llama-AVSR and Llama-MTSK must compute the
loss separately for each compression rate and task, requiring C4
passes for ASR, Cv for VSR, and C4Cyv for AVSR. Llama-MT
trains one multi-task model for each audio—visual rate pair, which
results in T'(C4Cv) passes. In contrast, Omni-AVSR computes the
loss only once per task, as it samples a single audio and video rate
at each iteration, thus reducing the requirement to just 71" passes.
Overall, Omni-AVSR requires only a single model and substantially
reduces overall training cost compared to all baselines.

Results under Acoustic Noise. To evaluate the robustness of
Omni-AVSR under noisy conditions, we inject babble noise from
the NOISEX dataset [48]] at varying SNRs. As shown in Table m
Omni-AVSR-ST consistently outperforms Llama-AVSR and Llama-
MTSK, and remains competitive with Llama-MT across noise levels,
often surpassing it at lower SNRs.

Comparison with Other Multi-task Methods.

In Table [V} we compare Omni-AVSR-ST with three state-of-
the-art methods that train a single model for ASR, VSR, and
AVSR: u-HuBERT [39], MultiAVSR [40], and USR [38]. Unlike
Omni-AVSR, these methods do not support elastic inference. At
the (4,2) compression setting, Omni-AVSR-ST achieves the best
performance across all tasks while requiring significantly fewer
parameters and surpassing u-HuBERT, despite the latter being
trained on 1759 hours of data (LRS3 + VoxCeleb2 datasets).
Even under the more extreme (16,5) compression, Omni-AVSR-ST
maintains competitive results within a single set of weights.

III-C. Ablation Studies

AVSR Comparison with Sota Methods. Fig. ] (left) presents a
comparison of Omni-AVSR-ST with recent state-of-the-art approaches

Table V: Ablation on the best values of ASR/VSR/AVSR weights.

ASR VSR AVSR
AASR  AVSR  AAvSR
@ (16 (2 () (4,2 (16,5
1 1 1 29 57 270 286 2.7 4.4
1 1.5 1 27 44 268 283 26 4.0
1 2 1 27 44 270 285 25 4.0

on LRS3 for the AVSR task. Baselines include UniVPM [49], USR
[38], Whisper-Flamingo [17], Llama-AVSR [27], Auto-AVSR [18],
AV-HuBERT [14], and MMS-Llama [29]]. Omni-AVSR-ST (evaluated
at audio-video rates of (4,2)) achieves competitive WERs while
requiring substantially fewer parameters and training data hours
than all baselines, within one consistent framework.

LLM Scaling Trend. We study how scaling the LLM size
impacts performance in Fig. 2] (right). Specifically, we evaluate
Llama 3.2-1B, 3B, and 3.1-8B [47]], as well as Qwen 2.5-0.5B,
1.5B, 3B, 7B, 14B, and 32B [50|]. Results are reported for ASR at
audio rate 16 (black outline), VSR at video rate 2 (violet outline),
and AVSR at (4,2) rates. As shown, performance improves with
larger LLMs, with higher gains observed on more challenging tasks
(e.g., VSR) or under higher compression (e.g., ASR at rate 16).
However, larger models incur greater training cost, memory usage,
and slower inference. Overall, LLMs in the 1-3B parameter range
represent a favorable trade-off between accuracy and efficiency.

Optimal Task-specific Weights. In Table [V] we analyze the
impact of varying the loss weight coefficients in Eq. [T] for each task
on LRS2. The best performance is obtained with Aasr = Aavsr = 1
and Avsg = 1.5. Since VSR is the most challenging of the three
tasks, assigning it a higher weight leads to improved overall results.

IV. CONCLUSION

In this work, we introduced Omni-AVSR, the first unified audio-
visual LLM that jointly supports ASR, VSR, and AVSR while
enabling elastic inference under a single set of weights. By
combining efficient matryoshka-based multi-granularity training with
LoRA adaptation strategies, Omni-AVSR achieves strong performance
while reducing training and deployment costs. Experiments on LRS2
and LRS3 show that Omni-AVSR matches or surpasses state-of-the-art
baselines, remains robust in noisy conditions, and delivers favorable
trade-offs when scaling LLM size. Furthermore, Omni-AVSR provides
significant computational savings, requiring only one model and a
reduced number of LLM passes during training.
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