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Abstract

This thesis advances the field of efficient knowledge transfer and adapta-
tion in the realm of speech processing. It is structured to address the lim-
itations of transfer learning in dynamically evolving audio and speech pro-
cessing contexts, particularly through novel approaches for class-incremental
learning, parameter-efficient adaptation, and multimodal modeling. First, we
provide a comprehensive framework for class-incremental spoken language
understanding, allowing models to incrementally learn new intents and en-
tities while retaining previously acquired knowledge. Using knowledge distil-
lation and rehearsal-based strategies, we enhance robustness against catas-
trophic forgetting, a key limitation in continual learning. We also introduce
a unique approach to class-incremental audio classification, utilizing mutual
information optimization. Second, given the prohibitive computational costs
of traditional model adaptation (i.e., full fine-tuning), this thesis introduces
a comprehensive framework for parameter-efficient fine-tuning of audio and
speech foundation models. Furthermore, we propose new adapter designs to
achieve effective transfer learning with minimal computational overhead. Fi-
nally, extending beyond unimodal settings, we propose Llama-AVSR, a new
multimodal large language model with strong audio-visual speech recognition
(AVSR) abilities. Llama-AVSR leverages pre-trained audio and video encoders
along with a large language model to achieve state-of-the-art accuracy on the
major AVSR benchmark. Notably, this model adapts pre-trained language
models to the multimodal AVSR domain while keeping the core model param-
eters frozen, ensuring computational efficiency. Overall, this thesis provides a
comprehensive framework and empirical findings that advance the application
of continual learning, efficient fine-tuning, and multimodal models for speech
processing tasks. These contributions pave the way for adaptive, resource-
efficient speech understanding systems.
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Chapter 1

Introduction

1.1 The Transfer Learning Paradigm

Transfer Learning [267] has emerged as a powerful technique in machine
learning, particularly in domains like natural language processing [23, 186],
computer vision [52,60], speech processing [222], and reinforcement learning
[183]. This approach involves training a model on a large, diverse dataset to
learn general representations. Then, this pre-trained model can be adapted
to new, specific tasks using a relatively small amount of task-specific data.
This process, known as fine-tuning, leverages the knowledge gained from the
pre-training phase to improve the model’s performance on the target task(s).
Usually, the model’s parameters are entirely updated (i.e., full fine-tuning,
see Figure 1.1).

The transfer learning paradigm comes with several benefits. One of the
primary advantages is its ability to reduce the amount of data necessary
to train a new model. By using a pre-trained network as a foundation,
the model already possesses a fundamental understanding of the underly-
ing patterns within the data. This enables the model to learn more rapidly
and efficiently with less data, making it feasible to apply neural networks
to smaller datasets. Another advantage of transfer learning is its ability to
mitigate the risk of overfitting. Overfitting occurs when a model becomes
overly specialized to the training data, leading to poor performance on un-
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1.1. The Transfer Learning Paradigm

Step 1:
Pre-training

Pre-training
Dataset

Model

Pre-trained
Model

Step 2a:
Full Fine-tuning

Task-Specific
Dataset

Pre-trained
Model

Fine-tuned
Model

Step 2b:
Parameter-efficient 

Fine-tuning

Task-Specific
Dataset

Pre-trained
Model

Pre-trained
Model

LoRA

LoRA

Figure 1.1: During stage 1, the model is pre-trained on a massive dataset, of-
ten unlabeled. Subsequently, traditional (full) fine-tuning involves updating
all the pre-trained model’s parameters using a smaller, task-specific dataset.
This process results in a specialized model but can be computationally ex-
pensive and prone to overfitting. In contrast, parameter-efficient fine-tuning
freezes the pre-trained model and introduces lightweight modules (LoRA in
this example [101]) that are trained specifically for each downstream task.
This thesis delves into this efficient approach.

seen data. By utilizing a pre-trained network, the model has already been
exposed to a vast dataset, allowing it to develop a strong ability to generalize
to diverse data. Additionally, transfer learning can accelerate the training
process and diminish the computational cost. The pre-trained network offers
a solid starting point that can guide the model to converge toward a good
solution more rapidly, thereby lessening the time and resources necessary to
train a new model.

Despite its successes, this paradigm for transfer learning faces several
limitations in various contexts. Firstly, in multi-task fine-tuning, the learn-
ing signals from different tasks can negatively interfere with each other [159].
Similarly, in continual learning, the model tends to forget previously learned
knowledge when adapting to new examples [69, 204]. Secondly, when the
training and evaluation data distributions differ, the model may struggle to
generalize effectively [103, 122]. This makes the model fragile and less ac-
curate, hindering its deployment in real-world scenarios where distribution
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Chapter 1. Introduction

shifts are common. Moreover, updating all the pre-trained model’s param-
eters can be very expensive and unfeasible, mainly when dealing with huge
pre-trained models and many downstream tasks, requiring a copy of the
model to be stored in the memory for each task.

Given these limitations, simply fine-tuning the entire model is impractical
and often ineffective in multiple scenarios. Therefore, targeted approaches
are necessary to address these specific challenges. In this direction, this thesis
aims to develop efficient methods for conveying the knowledge and informa-
tion encapsulated in pre-trained models to audio and speech downstream
tasks. As current research in this area is limited, there is a clear need for fur-
ther investigation. Specifically, this thesis will explore the following research
questions:

(Q1) In a continual learning scenario, fine-tuning a pre-trained model
continuously results in complete catastrophic forgetting of its past
knowledge. How can we develop effective continual learning strategies
to prevent catastrophic forgetting in pre-trained models, allowing them
to learn new tasks without compromising their existing knowledge?

(Q2) When dealing with numerous downstream tasks, adapting the pre-
trained model for each downstream task is unfeasible and computation-
ally expensive. How can we efficiently adapt pre-trained audio and
video foundation models to various downstream tasks using parameter-
efficient fine-tuning techniques, minimizing computational costs and
preserving model performance?

(Q3) Given the exceptional multimodal understanding and reasoning
capabilities of pre-trained Large Language Models, how can we effi-
ciently leverage them to enhance generative tasks like audio, visual,
and audio-visual speech recognition?

This thesis aims to systematically investigate and address these research
questions, providing a comprehensive study on efficiently transferring and

3



1.2. Contributions

adapting knowledge from pre-trained models to challenging, real-world sce-
narios.

1.2 Contributions

This thesis tackles the problem of how to transfer the knowledge of pre-
trained models to multiple tasks in an efficient and catastrophic forgetting-
free way for audio and speech processing. This thesis bridges gaps in im-
portant areas of audio and speech processing that received minimal or no
attention compared to other fields. We start by studying spoken language
understanding and acoustic scene classification through the lens of class-
incremental learning, where different tasks are defined by partitioning the
dataset classes into disjoint subsets. In this way, we try to adapt a single
model to incorporate new concepts over time whilst retaining the past knowl-
edge, avoiding the catastrophic forgetting issue. We provide ad-hoc strategies
based on knowledge distillation and rehearsal paradigms to endow the models
with incremental-learning capabilities. On top of this, we frame the problem
of spoken language understanding as a sequence-to-sequence problem where
the model generates the outputs in an auto-regressive fashion. This formula-
tion allows us to investigate different methods to mitigate forgetting at both
the multimodal encoders level and within the ASR decoder.

We then move our attention to the problem of parameter-efficient transfer
learning of pre-trained audio and speech models, which aims to dispense with
the expensive paradigm of updating all the parameters of the pre-trained
model in favor of more a resource-efficient one. Whereas much attention
has been devoted to this line of research in the natural language process-
ing and vision domains, the speech and audio domains have seen slower
progress. To address this gap, we provide a framework whereby we study
several parameter-efficient transfer learning methods for the efficient fine-
tuning of audio and speech foundation models. Furthermore, we propose: 1)
a new adapter design that builds on the Conformer architecture to enhance
performance, and 2) the use of the mixture of experts paradigm to tailor
different adapter modules to specific input data.

4



Chapter 1. Introduction

Finally, given the strong multimodal capabilities of large language models,
we study how to leverage powerful LLMs (e.g., Llama 3.1) to carry out the
tasks of audio, visual, and audio-visual speech recognition. This leads to the
development of Llama-AVSR, a novel multimodal large language model with
strong audio-visual speech recognition capabilities. Llama-AVSR leverages
pre-trained audio and video encoders, as well as a large language model
to carry out multiple tasks, establishing new state-of-the-art results on the
largest public audio-visual speech recognition benchmark.

Overall, our main contributions can be summarized as follows:

1. Class-Incremental Learning for Spoken Language Understand-
ing and Audio Classification. We study the classification tasks of
spoken language understanding (SLU) (i.e., intent classification) and
audio classification from the class-incremental learning perspective. We
present a detailed analysis of the optimal combination of rehearsal and
knowledge distillation for the task of class-incremental spoken language
understanding. Besides, for audio classification, we propose a novel ap-
proach that leverages mutual information optimization to enhance both
the training process and memory selection.

2. Class-Incremental Sequence-to-Sequence Spoken Language Un-
derstanding. We treat the task of SLU as a sequence-to-sequence task
where the intent labels are generated along with the ASR transcrip-
tions in an auto-regressive way. We study how to mitigate catastrophic
forgetting on the ASR decoder side via a sequence-level knowledge dis-
tillation loss, Seq-KD [32], as well as on the encoders space through
multimodal contrastive distillation objectives, COCONUT [30]. We
also show that employing both Seq-KD and COCONUT methods leads
to the best results.

3. Parameter-Efficient Transfer Learning of Audio and Speech
Foundation Models. We provide a framework whereby we study
several parameter-efficient transfer learning methods for the efficient
fine-tuning of audio and speech foundation models. Furthermore, we

5



1.3. A Note on the Notion of “Task”

propose: 1) a new adapter design that builds on the Conformer archi-
tecture to boost performance, and 2) the use of the mixture of experts
paradigm to specialize different adapter modules to specific input data.

4. A New State-of-the-art Multimodal Large Language Model
for Audio-Visual Speech Recognition. We propose Llama-AVSR,
a new multimodal large language model with strong audio-visual speech
recognition capabilities. It leverages pre-trained audio and video en-
coders, as well as a large language model (i.e., LLama 3.1 8B [64]) to
perform automatic speech recognition, visual speech recognition, and
audio-visual speech recognition. We establish new state-of-the-art re-
sults on the largest public audio-visual speech recognition benchmark.

1.3 A Note on the Notion of “Task”

In this thesis, the term “task” can have a different meaning based on the
context it is used in. In class-incremental learning, with task we refer to a
specific training stage in which the model is learning a new set of classes.
The number of tasks depends on how we partition the dataset’s classes. For
example, if a dataset has 30 classes, we could assign 3 classes to each task,
resulting in a sequence of 10 tasks. The model is trained sequentially on
each of these tasks and must be able to integrate the knowledge of the new
classes included in the current task whilst retaining the knowledge from the
previous tasks. This reasoning applies to Chapter 2 of this thesis.

In Chapters 3 and 4, instead, “task” denotes the usual connotation of
downstream task, on which the pre-trained model is tested to assess its gen-
eralization abilities. Usually, unlike in class-incremental learning, the model
is not required to perform well on the pre-training tasks it has been trained
on. To minimize the confusion throughout this thesis, we will specify “down-
stream task” in Chapters 3 and 4.

6



Chapter 1. Introduction

1.4 Publications

This doctoral thesis is supported by a series of publications that showcase
the research contributions made in the fields of audio, speech, and audio-
visual speech processing, with a particular emphasis on continual learning for
spoken language understanding and speech recognition, parameter-efficient
transfer learning of audio and speech foundation models, and multimodal
large language models for audio-visual speech recognition. Below is a list of
these publications in chronological order.

1. An Investigation of the Combination of Rehearsal and Knowledge Dis-
tillation in Continual Learning for Spoken Language Understanding,
U. Cappellazzo, D. Falavigna, A. Brutti. Proceedings of Interspeech,
2023 [27]. The code is available here.

2. Sequence-level Knowledge Distillation for Class-incremental End-to-end
Spoken Language Understanding, U. Cappellazzo, M. Yang, D. Falav-
igna, A. Brutti. Proceedings of Interspeech, 2023 [32].

3. Improving Continual Learning of Acoustic Scene Classification via Mu-
tual Information Optimization, M. Yang, U. Cappellazzo, X. Li, B.
Raj. Proceedings of the International Conference on Acoustics, Speech
and Signal Processing (ICASSP), 2024 [239].

4. Training Early-Exit Architectures for Automatic Speech Recognition:
Fine-Tuning Pre-Trained Models or Training from Scratch, G. A. Wright,
U. Cappellazzo, S. Zaiem, D. Raj, L. Ondel Yang, D. Falavigna, M.
Nabih, A. Brutti. Proceedings of the ICASSP Self-supervision in Au-
dio, Speech and Beyond (SASB) workshop, 2024 [230].

5. Continual Contrastive Spoken Language Understanding, U. Cappel-
lazzo, E. Fini, M. Yang, D. Falavigna, A. Brutti, B. Raj. Proceedings
of ACL (Findings), 2024 [30].

6. Parameter-Efficient Transfer Learning of Audio Spectrogram Trans-
formers, U. Cappellazzo, D. Falavigna, A. Brutti, M. Ravanelli. Pro-
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ceedings of the IEEE International Workshop on Machine Learning for
Signal Processing (MLSP), 2024 [29]. The code is available here.

7. Efficient Fine-tuning of Audio Spectrogram Transformers via Soft Mix-
ture of Adapters, U. Cappellazzo, D. Falavigna, A. Brutti. Proceed-
ings of Interspeech, 2024 [28]. The code is available here.

8. Evaluating and Improving Continual Learning in Spoken Language Un-
derstanding, M. Yang, X. Li, U. Cappellazzo, S. Watanabe, B. Raj.
Proceedings of Interspeech, 2024 [241].

9. Large Language Models Are Strong Audio-Visual Speech Recognition
Learners, U. Cappellazzo, M. Kim, H. Chen, P. Ma, S. Petridis, D.
Falavigna, A. Brutti, M. Pantic. To appear at ICASSP 2025 [31].
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Chapter 2

Class-Incremental Spoken
Language Understanding

This chapter investigates the problem of spoken language understanding
(SLU) from a class-incremental learning perspective. Our objective is to
endow a single model with lifelong learning capabilities such that it can deal
with a stream of emerging concepts or classes (in our case intents or sounds)
over a (in)finite time horizon. This paradigm goes beyond the unrealistic and
brittle assumption that the data distribution the model will face after deploy-
ment aligns with what it encountered during the training phase. The model
must be able to incorporate fresh new information while consolidating and
transferring forward the knowledge acquired in the previous tasks. We first
formulate the problem of SLU as a standard classification problem and then
as a more complex sequence-to-sequence problem where the model generates
the outputs in an auto-regressive manner, and we present multiple techniques
to attenuate the issue of catastrophic forgetting (i.e., the natural inclination
of neural networks to erase the past knowledge in favor of new information).
In addition to this, we propose a novel class-incremental learning method
for the problem of audio classification by improving both the modeling and
memory selection mechanism via mutual information optimization.

We organize this chapter as follows.

• We first discuss the problem of continual learning and its multiple set-
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tings.

• We then formulate mathematically the class-incremental learning set-
ting and provide a taxonomy of recent state-of-the-art methods that
tackle it.

• We describe in details three methods to mitigate catastrophic forgetting
for SLU and one for audio classification, which all of them have been
accepted for publications in top-notch conferences (e.g., Interspeech x2,
ICASSP, ACL).

2.1 Continual Learning

Intelligent systems rely on learning as a foundation to adapt to dynamic
environments. Throughout evolution, humans and other organisms have de-
veloped the remarkable ability to continually acquire, update, and utilize
knowledge in response to external changes [120,169]. Inspired by the human
capacity for adaptation, AI systems must also be able to deal with real-world
dynamics. This is the core focus of continual learning, where systems learn
a sequence of tasks incrementally, but perform as if they had learned all tasks
simultaneously. These tasks might include new skills, updated versions of ex-
isting skills, or adjustments to different environments and contexts, all while
addressing realistic problems [82, 213, 218]. Given this lifelong learning pro-
cess, continual learning is often referred to as incremental or lifelong learning
in the literature, with the terms used interchangeably in most cases [46].

Conventional machine learning models are typically designed to work
with static data distributions, but continual learning involves adapting to
ever-changing distributions. A key issue in this process is catastrophic for-
getting [159], where learning a new distribution significantly impairs the
system’s ability to retain knowledge of previous ones. This challenge high-
lights the trade-off between plasticity (the ability to learn new information)
and stability (the ability to preserve past knowledge) [78]: too much empha-
sis on one tends to weaken the other. However, beyond just finding a balance
between these two, an effective continual learning approach should also focus
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Calendar or Transport? Weather or Music? Calendar or Transport? Calendar or Transport or Weather or Music?

Figure 2.1: The setting of Task-Incremental Learning (TIL), Domain-
Incremental Learning (DIL), and Class-Incremental Learning (CIL). CIL and
TIL share the same training protocol, yet TIL is much easier during inference
as it is required to only classify among the corresponding label spaces. DIL
refers to the data stream with distribution change, where new tasks contain
the same classes from different domains.

on achieving strong generalization—enabling the model to handle variations
both within tasks and across different tasks.

Continual learning encompasses multiple scenarios based on how we define
the tasks and the availability of task labels. The most common ones are de-
picted in Figure 2.1 in increasing complexity order. In a class-incremental
learning (CIL) scenario (Figure 2.1, right), training data emerge sequentially
over time. In each timestamp, the model learns from a new task, which com-
prises a subset of new classes from the original training dataset. For instance,
during task one the model has access only to the intent classes “calendar”
and “transport”, and during the second task to the intent classes “weather”
and “music”, and so on. Note that each intent class can be included in one
and only task, so the tasks correspond to non-overlapping subsets of classes.
At test time, the model is tested on all seen classes to determine if it can still
accurately distinguish between them. A good model is expected to balance
learning the characteristics of new classes while maintaining knowledge of
previously learned ones (i.e., plasticity-stability dilemma [78]). In addition
to CIL, Task-Incremental Learning (TIL) and Domain-Incremental Learning
(DIL) are two other popular settings to study the lifelong capabilities of a
model [213] (Figure 2.1, left and middle). TIL is the same as CIL during the
training phase, where new classes appear at each new task. However, there is
a key difference at test time: whereas CIL requires the model to differentiate
among all the classes seen so far, TIL relaxes this constraint by providing the
task labels of each test data, thus the model needs to classify only among
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the classes present in that specific task. Therefore, the model is required to
perform inter-task class discrimination in CIL, whereas for TIL it performs
intra-task class discrimination, thus making TIL an easier problem than CIL
since usually it is possible to train models with task-specific components.
Finally, the DIL protocol concentrates on the scenario with concept drift or
distribution change, where new tasks comprise data from different domains
but with the same label space.

We finally note that other continual learning protocols have been pro-
posed and studied in the literature, such as online continual learning and
continual pre-training, showcasing the multiple facets that characterize this
paradigm. However, given its higher complexity, the focus of this chapter
and this thesis is on class-incremental learning. We refer the reader to [218]
for an exhaustive description of CL protocols.

2.2 Class-Incremental Learning: Problem For-

mulation and Taxonomy

2.2.1 Problem Formulation

Class-Incremental Learning involves learning from a continuously-evolving
stream of new classes. We suppose there is a sequence of K training tasks
{D1, . . . ,DK}, where each task introduces a new dataset Dk, comprising nk

instances {(xi
k, y

i
k)}

nk
i=1. Here, xi

k is an instance of class yik ∈ Yk (e.g., speech
or audio signals). The label spaces for different tasks are disjoint, i.e.,
Yk ∩ Yk′ = ∅ for k ̸= k′. At any given time, the model can only access data
from the current task Dk. The objective of CIL is to develop a model that
not only learns from the current task Dk but also retains knowledge from
all previously learned tasks. At the end of each task, the model is evaluated
on the union of all classes seen so far Y = Y1 ∪ · · · ∪ YK . The goal is to
minimize the expected risk over all tasks, fitting a model f(x) : X → Y that
can accurately classify instances from both new and old classes.

12
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2.2.2 Taxonomy on CIL Strategies

Over the last few years, a vast array of continual learning methods has
emerged. Consequently, multiple survey papers have tried to classify and
elaborate on many CIL methods [54,124,158,169,213,218,261]. It is common
practice to categorize CL methods into three macro groups: regularization-
based, replay-based, and architecture-based. More fine-grained classifications
have been proposed, but since our proposed CIL methods rely on knowledge-
distillation and replay concepts, we mainly focus on regularization and replay
CIL strategies.

Regularization-based methods introduce ad-hoc regularization terms
to contrast catastrophic forgetting. Some methods regularize the weights
of the network [2, 7, 117, 171, 189, 217], whereas others penalize changes to
the model’s intermediate or final outputs, usually by means of the knowledge
distillation (KD) concept [94]. By denoting the model trained in the previous
task as the teacher model and that trained in the current task as the student
model, KD fosters the transfer of the knowledge accrued in the teacher model
onto the student. Given the large number of proposed methods that exploit
the KD concept, we can identify three sub-categories of KD-based methods.
Logit distillation methods, the first to be proposed and the most popular ones,
align the probability distributions over the classes of the student and teacher
models [132, 182, 232]. In this way, they constrain the old and new models
to share the same semantic relationship. Feature distillation approaches,
instead, operate on the intermediate feature embeddings produced by the
feature encoders such that those produced by the new models resemble the
ones obtained with the teacher model [61,96,109,110]. Finally, we point out
that logit and feature distillations can be combined together to provide a
double-level distillation regularization and improve performance, as we will
show in the next section in one of our proposed methods [27].

Replay-based methods, or rehearsal-based (we will use rehearsal and re-
play terms interchangeably throughout this dissertation), interleave the new
data with cherry-picked samples from the previous tasks such that the model
can revisit former data. This approach, despite being simple and intuitive,
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represents a strong baseline and sparked a lot of interest in how to select
the best candidates to be retained in the replay buffer. For example, [182]
suggests selecting the samples for each class closest to their moving barycen-
ter. In this way, the rehearsal samples are a good representative of each class
distribution. On the contrary, some methods propose to choose “hard” exam-
ples because they are more informative. For instance, [37] propose to sample
exemplars with large prediction entropy and near the decision boundary. [17]
estimate data uncertainty through data augmentation and keep the samples
with the highest prediction uncertainty. Another line of research incorporates
regularization terms with this additional data to steer the optimization pro-
cess and prevent catastrophic forgetting [38,219,240]. Finally, it is also worth
mentioning that some works propose to model the distribution and generate
samples rather than storing them in the replay buffer [70,108,198,234]. This
is motivated by the fact that storing past data is not always viable due to
privacy issues.

Architecture-based methods introduce task-specific parameters, either
by expanding the network itself [167,237,262] or keeping the network frozen
and learning a small number of additional parameters (i.e., prompts) [162,
199, 224, 225]. These methods, despite achieving state-of-the-art results, of-
ten require expandable memory budgets, which is unfeasible for incremental
learning on edge devices and when the number of tasks is big. This is the
main reason our proposed methods leverage replay and KD principles rather
than architectural methods.

2.3 Class-Incremental Spoken Language Under-

standing

With the rapid advancement of intelligent voice-enabled personal assistants,
Spoken Language Understanding (SLU) has gained significant recognition in
recent years [11,179]. Its primary function is to extract key information from
spoken utterances, enabling the system to take appropriate actions to meet
the user’s requests. SLU involves two main tasks [179, 211]: 1) Intent Clas-
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sification, which involves mapping the spoken sentence to its corresponding
intent, and 2) Entity Classification, also known as Slot Filling, where specific
fields of predefined semantic structures are populated with relevant content.

Traditional SLU models follow a cascaded approach, where an automatic
speech recognition (ASR) system is first employed, followed by a natural
language understanding (NLU) module [95, 164]. In this pipeline, the ASR
converts spoken input into text, and the NLU then identifies the target intent
from the text. While this method can take advantage of large amounts of
ASR and NLU data, it is prone to error propagation from the ASR system. In
contrast, end-to-end (E2E) SLU models [5,147,173,188,192] have gained more
attention recently, as they use a single trainable model to map speech directly
to intent labels, eliminating the need for text transcription and reducing both
latency and error propagation.

Most prior research on SLU has concentrated on the conventional inde-
pendent, identically distributed (i.i.d.) setting, where the entire dataset is
available to the model all at once. However, this approach contrasts sharply
with real-world situations, where models face significant shifts in data dis-
tribution or must adapt to new domains without undergoing full retraining.
In such cases, as we have discussed in detail in the previous section, deep
models often overwrite previously learned knowledge in favor of the new task,
resulting in catastrophic forgetting [159]. While a few studies have explored
domain-incremental learning for SLU [165, 195], the more challenging class-
incremental learning setting, which is the focus of this chapter and thesis,
remains relatively unexplored.

Motivated by the absence of prior research on class-incremental learning
for SLU and its potential to address real-world scenarios where new concepts
must be incorporated over time, in the next sections we present three key
contributions to advance this field.
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2.4 An Investigation of the Combination of Re-

hearsal and Knowledge Distillation in Con-

tinual Learning for Spoken Language Un-

derstanding [27]

2.4.1 Overview

In this work [27], we consider the problem of intent classification for SLU
applied to a class-incremental learning (CIL) scenario, whereby the intents
are distributed into several tasks, and the model has to correctly learn them
sequentially. To the best of our knowledge, no prior works have studied such a
scenario for SLU. To mitigate the issue of catastrophic forgetting, we propose
to combine knowledge distillation techniques with replay-based ones. This is
buttressed by two main motivations: 1) their mutual interaction is scarcely
investigated for speech as well as for other modalities (e.g., vision), and 2)
the additional use of a distillation loss, which alone falls through in a CIL
scenario, is not always beneficial to the model, as pointed out in [20, 158],
who contend that it can even lead to a deterioration in the performance.

Therefore, we explore the interplay between applying knowledge distil-
lation (KD) at different levels of the model, specifically at the prediction
level and in the feature space, and the rehearsal method. Our findings reveal
that combining KD at both the prediction and feature levels yields the best
outcomes.

Our contributions can be summarized as follows:

• We define a CIL scenario for SLU over the Fluent Speech Command
dataset [147];

• We provide a thorough analysis of the combination of rehearsal and
KDs for 4 CL strategies, and we prove its efficacy in our scenario;

• We show that a careful design of the KD weights is crucial for obtaining
optimal results:
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• We provide an ablation study on the size of the rehearsal buffer, and
we conclude that our approach attains larger gains for smaller sizes,
thus making it appealing for low-resource devices.

2.4.2 Method

In our CIL setting, a classification model, which comprises a multilayered
feature extractor ENCθ and a classifier FCϕ (parameterized by θ and ϕ,
respectively), is trained over a sequence of K distinct training phases, that
is D = {D1, . . . ,DK}. The dataset Dk related to the kth training phase is
interpreted as a task defined by audio signals Xk and associated intent class
labels Yk, i.e. Dk = (Xk,Yk). In CIL scenarios all task label sets are mutually
exclusive, i.e. Yk ∩ Yk′ = ∅, k ̸= k′.

At the end of task k − 1 we select a set of data Rk−1 ⊂ Dk−1 for the
rehearsal memory. Then, all the rehearsal data, from task 0 to task k − 1,
Rk−1

0 = {R0, . . . ,Rk−1} are joined with the training data Dk in order to train
the model for the kth task. A typical rehearsal CL strategy optimizes the CE
loss computed over Dk ∪Rk−1

0 :

Lk
CE = −

∑
(x,y)∈Dk∪Rk−1

0

log(p[y|x; (θk, ϕk)]), (2.1)

where p[y|x; (θk, ϕk)] is the output probability distribution of the model given
the parameters θk and ϕk at task k.

We propose to further regularize the model adaptation through a KD
loss. We experiment with two different distillation terms in combination
with the CE loss. The first one is the Kullback Leibler Divergence (KLD)
between the output probability distribution from the current model at task
k (usually referred to as the “student” model) and the distribution predicted
with the model trained at task k − 1 (the “teacher ”), so we are operating on
the prediction space:

Lk
KLD =

∑
(x,y)∈Ik

p[y|x; (θk−1, ϕk−1)] log(p[y|x; (θk, ϕk)]). (2.2)
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2.4. An Investigation of the Combination of Rehearsal and Knowledge
Distillation in Continual Learning for Spoken Language Understanding [27]

In the equation above, Ik represents the training set for task k, consisting
of only the rehearsal data (Ik = Rk−1

0 ), or the union of the rehearsal and
current data of task k (Ik = Dk ∪Rk−1

0 ).

The second regularization term is given by the mean squared error (MSE)
loss between the output of the model encoder at tasks k− 1 and k, so we are
operating on the feature space:

Lk
MSE =

∑
x∈Ik

∥ENCθk−1
(x)− ENCθk(x)∥2. (2.3)

Also in this case, we experiment with both Ik = Rk−1
0 and Ik = Dk ∪Rk−1

0 .

The total loss to optimize in each task k is therefore a linear combination
of the CE loss in eq. 2.1 and the regularization losses in eqs. 2.2 and 2.3:

Lk = λCELk
CE + λKDLk

MSE + λKDLk
KLD. (2.4)

Figure 2.2 shows a schematic illustration of the proposed CL approach.

2.4.3 Experiments and Discussion

CIL Definition and Rehearsal Memory. We evaluate our proposed ap-
proach on the Fluent Speech Commands (FSC) dataset [147]. FSC includes
30,043 English utterances, recorded at 16 kHz. The dataset provides 248

different utterances mapped in 31 different intents. There is only one intent
per utterance. To give an example, the intent increase_heat_kitchen is asso-
ciated with the utterance “turn up the temperature in the kitchen”. We split
the dataset into train, validation, and test sets with a ratio of 80:10:10 as
proposed in [147].

To define the CIL scenario, we partition the FSC dataset into 10 disjoint
tasks, where the first task comprises 4 unique intents and the subsequent 9

tasks contain 3 intents. The order of the intents is random, and we have not
observed significant variations by considering different random orders.

Concerning the rehearsal memory, its entire capacity is not exploited from
the very beginning, but each class has a pre-allocated space that is used when
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Figure 2.2: Overview of our proposed approach. Rehearsal samples are sam-
pled by the rehearsal buffer Ik and interleaved with the data from the current
task to compute the cross-entropy loss λCE. In addition to this, we add two
KD losses, λMSE and λKLD, that foster the knowledge transfer from the
teacher to the student model on the feature space and prediction space, re-
spectively. For both losses, we experiment by computing them over only the
rehearsal data or over rehearsal + new data.

that class is seen for the first time. In this way, we avoid a possible imbalance
among the classes between the first and the last tasks.

Model Architecture. For our experiments, we use the temporal convo-
lutional network (TCN) [148]. We observe that the KD strategies we propose
are architecture-agnostic, so they do not rely on the underlying architecture.
It would be possible to substitute the TCN network with any other deep
architecture (e.g., transformer-based encoder). The network takes as input
40 Mel-spaced log filter-banks, computed using a sliding window of length 25

ms, with 10 ms stride. Then, it applies a global layer normalization (gLN)
and a bottleneck layer (1x1 conv block) that maps the input features into
64 channels. The input layer is followed by 2 repetitions of 5 consecutive
1-D dilated convolutional residual blocks (Figure 2.3). Each residual block
is formed by two symmetrical pipelines surrounding a depth-wise separable
convolutional layer that maps the 64 bottleneck features into 128 channels.

19



2.4. An Investigation of the Combination of Rehearsal and Knowledge
Distillation in Continual Learning for Spoken Language Understanding [27]
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Figure 2.3: Structure of a 1-D convolutional residual block.

A residual branch connects the original input to the output. Mean pooling
is applied to the output of the last block, followed by gLN and a linear layer.
A softmax activation layer gives the final class scores.

Training Details. We train the TCN model for 50 epochs per task with
Adam optimizer [115], with a learning rate equal to 5e−4. The CIL scenario
is implemented with the Continuum library [62]. The code to reproduce all
our experiments is available here.

On the Choice of the Distillation Weights. The selection of the KD
weights deserves special attention. A common choice for the λKD weight is

n
n+m

, where n is the number of old (seen) classes and m is the number of
new classes [232, 257]. This choice was originally proposed for works that
used only KD as CL strategy, and it gives more and more importance to
λKD over time because the past model retains the knowledge from more and
more past classes. When we use both KD and rehearsal approaches applied
to rehearsal and current data (Ik = Dk ∪Rk−1

0 ), the importance of the past
model is damped by the fact that the current model sees the rehearsal data,
so we still would like λKD to increase, but at a slower pace, and this can
be accomplished by using a log function. When we use the KD applied
only to the rehearsal data (Ik = Rk−1

0 ), we give it a weight proportional to
the fraction of rehearsal data in the mini-batch. Since this number is too
small during the first tasks, we apply the square root operation to enlarge it.
Ultimately, we set λKD as follows:

λKD =

log(1 + n
n+m

) if Ik = Dk ∪Rk−1
0√

brehe
ball

if Ik = Rk−1
0

(2.5)

where brehe counts the number of rehearsal data in the current mini-batch,
and ball is the current mini-batch size. We found empirically that using λKD
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Table 2.1: Intent classification accuracy with 930 samples in the rehearsal
memory, using different distillation strategies (Feature and Prediction Space
KDs, and their combination) and rehearsal-based strategies. The best accu-
racies overall are reported in bold.

Baselines last acc avg acc

Offline 0.98 -
Finetuning 0.07 0.27
Pred. KD (no rehe) 0.08 0.27
Feat-KD Pred-KD Random Mean iCaRL [182] GEM [145]

data data Last
Acc

Avg
Acc

Last
Acc

Avg
Acc

Last
Acc

Avg
Acc

Last
Acc

Avg
Acc

- - 0.66 0.72 0.65 0.69 0.68 0.74 0.57 0.71
Feature Space KD

R - 0.74 0.78 0.73 0.74 0.79 0.80 0.77 0.79
D ∪R - 0.59 0.64 0.56 0.61 0.60 0.64 0.71 0.71

Prediction Space KD
- R 0.68 0.74 0.63 0.69 0.66 0.73 0.62 0.73
- D ∪R 0.76 0.76 0.69 0.72 0.78 0.79 0.60 0.71

Double KDs
R R 0.75 0.77 0.73 0.74 0.79 0.79 0.76 0.80
R D ∪R 0.77 0.80 0.73 0.74 0.81 0.81 0.75 0.80

as defined in Eq. 2.5 brings a 1% to 2% improvement in accuracy. This study
suggests that a careful choice of the KD weights is essential.

Eq. 2.4 changes depending on the considered experiment. When we do
not apply any KD loss, the weights boil down to λKD = 0, λCE = 1 (in
practice, only the CE loss is used). When we use the KD in the feature space
only, the KLD loss is not present, λKD follows eq. 2.5, and λCE = 1 - λKD.
If we use the KD in the predictions space, the same as before applies with
the KLD loss and the MSE loss inverted. Lastly, when both the KLD loss
and the MSE loss are employed, their coefficient λKD follows eq. 2.5, and
λCE is set to 1.

Main Results. Table 2.1 reports the intent classification accuracy for
different KD strategies in combination with 4 CL approaches, i.e. a rehearsal
approach with 3 different sample selection strategies (random, iCaRL [182],
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and “closest_to_mean”, where the samples which are closest to their class
mean in the feature space are chosen), and GEM [145]. The rehearsal memory
size is 930 (around 4% of the dataset size). We consider 2 random class orders,
and for each, we run 4 experiments and take the average. We use 2 metrics
to test the efficacy of each strategy: the average accuracy (avg acc), which
is defined as the average of the accuracies after each task, and the accuracy
after the last task (last acc).

In the upper part of Table 2.1 we include the results for: i) the offline
upper bound (i.e., no incremental learning), which is in line with the current
state-of-the-art methods on the FSC dataset; ii) the results obtained with
the naive fine-tuning method, and iii) the results we achieve applying solely
the KD in the predictions space without rehearsal. We note that the latter
two methods incur severe catastrophic forgetting, and this confirms previous
works stating that the KD alone is not sufficient to achieve good performance
results in a CIL scenario [125].

The lower part of the table shows the accuracy results when rehearsal
data are employed. We report results when the distillation is performed at
the feature level, predictions level, and both levels, respectively. For each
configuration, the table also reports the performance when distillation is
applied to either rehearsal data alone (denoted with R in the table) or to the
union of rehearsal and actual task data (denoted with D ∪R).

When we endow the model with the KD in the feature space, the reliance
on only the rehearsal data improves both the average accuracy and the last
accuracy. On the contrary, the joint use of D ∪ R deteriorates the perfor-
mance. This can be explained by observing that if we use D ∪ R, we are
forcing the current model, θk, to produce feature representations that are
similar to the ones obtained with the previous model, θk−1. Whereas this
is desirable for the rehearsal data (the previous model has been trained on
them), this is not the case for the new data, since we want our model to
learn in the actual task new clusters which should be far apart from the past
clusters.

Considering the KD in the predictions space, instead, we witness a trend
inversion. The use of D ∪ R achieves better results than just using the

22



Chapter 2. Class-Incremental Spoken Language Understanding

231 465 930
Memory size [samples]

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8
Av

er
ag

e 
ac

cu
ra

cy

no KD
KD pred all data
KD feat only rehe
double KDs

Figure 2.4: Average accuracies for different values of the memory size for the
iCaRL strategy.

data in the memory, albeit the difference is not as pronounced as for the
feature-space KD. We speculate that since in the predictions space we deal
with probability distributions, the new and teacher models produce values
for both new and past classes, thus it is more convenient to apply the KD to
D∪R (e.g., D and R act as negative samples for the past and new classifiers,
respectively). It is also worth noting that in almost all cases the feature-level
KD attains slightly better results than its predictions counterpart. We point
out that GEM achieves slightly better results when only rehearsal data are
considered, and this may be because it already employs a regularization on
the gradients using only the rehearsal data.

The last two rows of Table 2.1 consider the combination of feature-level
and predictions-level KDs (the configurations with D∪R in the feature space
are not considered since we have shown they highly deteriorate the model
performance). The use of the features-space KD applied to R in conjunction
with the predictions-space KD applied to D∪R gives the best results (0.811
and 0.812 for the last acc and avg acc by iCaRL, respectively), proving the
effectiveness of integrating both KDs.

Ablation on the Rehearsal Memory Size. Finally, in Figure 2.4
we show the average accuracies achieved by different KDs approaches when
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using smaller rehearsal memory sizes (we use iCaRL sampling strategy given
its superiority). We note the consistency of the performance trend as the
memory size changes. In particular, the relative gain in accuracy provided
by the KDs is larger when a rehearsal memory with a smaller capacity is
used. For instance, the relative gain is around 7.2 points when the memory
size is 930, whereas when the memory size is reduced to 231 samples the gain
increases up to 9.9. This demonstrates the effectiveness of our approach also
for limited-budget SLU systems.

2.4.4 Final Remarks and Future Work

In this work, we described an approach for class-incremental continual learn-
ing in a SLU domain. We show that the KD on the rehearsal data is effective
if applied to the encoded features. Furthermore, the feature-level MSE loss,
when added to the usual predictions-level KD loss, brings additional perfor-
mance improvements. The efficacy of the approach is particularly evident
when the rehearsal memory size is small, making it suitable for low-resource
devices. One limitation is the dataset that, although large in terms of size,
lacks lexical richness and variety. Thus, in the next section we extend the
proposed approach to a more recent and complex end-to-end SLU dataset,
the Spoken Language Understanding Resource Package (SLURP) [19], which
also features the prediction of multiple entities inside a spoken sentence (e.g.,
slot filling).

2.5 Sequence-Level Knowledge Distillation for

Class-Incremental End-to-End Spoken Lan-

guage Understanding [32]

2.5.1 Overview

In the previous section, we defined a CIL setting for the problem of intent
classification over the FSC dataset and tested multiple CL approaches com-
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bining rehearsal and knowledge distillation principles. However, SLU usually
involves a more challenging problem than intent classification, which asso-
ciates an intent label with the entire input sequence: entity classification or
slot-filling. In entity classification, some words of the input are to be mapped
to pre-defined slot labels. Sometimes, multiple entities are present in a single
input, making the problem even harder.

The FSC dataset only entails the problem of intent classification, so we
need to find another SLU benchmark to study entity classification under a
CIL setting. Consequently, we shift our attention to the SLURP dataset [19],
which is a multi-domain benchmark providing different levels of semantic an-
notations. For this reason, SLURP is considered the largest and most diverse
dataset in terms of lexical complexity for SLU. Due to its lexical richness, the
problems of intent and entity classification for SLURP are usually treated
as a sequence-to-sequence (seq2seq) problem [11,173], where the intents and
entities are generated along with the transcriptions in an auto-regressive way.
So, unlike the mainstream CL architecture composed of a feature extractor
and a classifier, we exploit a transformer-based seq2seq architecture, whose
decoder is also affected by forgetting as the encoder. We therefore propose
to combine rehearsal with regularization via knowledge distillation (KD) to
combat forgetting at both the encoder and decoder levels. We investigate
three KD approaches: one is applied to the encoder’s output (audio-KD),
whereas the other two distill the knowledge at the decoder side, either at a
local (token-KD) or global (seq-KD) level. Our experiments show that the
seq-KD stands out as the best approach and that integrating multiple KDs
at once leads to additional improvements.

In summary, our contributions are three-fold:

• We define a CIL scenario for the SLURP dataset;

• We study how to mitigate forgetting in a seq2seq model, thus mov-
ing away from the classical CL pipeline comprising a feature encoder
followed by a classifier;

• We propose three KDs losses that effectively lower forgetting and dis-
cuss their individual and mutual contributions.
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User: "I like jazz."
Scenario: music
Action: likeness
Entity tags and lexical fillers:
[music_genre: jazz]

Figure 2.5: Example of annotated utterance from the SLURP dataset. The
intent in this case is the pair (music,likeness).

2.5.2 Class-Incremental Learning for SLURP

In this section, we describe how we define the CIL setting for the SLURP
dataset [19]. SLURP is a multi-domain dataset for SLU comprising around 56

hours of audio of people interacting with a home assistant (slurp_real), with
the addition of 43.5 hours of synthetic recordings (slurp_synth). At present
this makes SLURP the biggest and the most diverse dataset in terms of
lexical complexity for SLU. Each utterance is annotated with three semantics:
Scenario, Action, and Entities. The pair (scenario, action) is defined as
Intent. Overall, there are 18 unique scenarios, 46 actions (56 if we consider
both slurp_real and slurp_synth), 55 entity types, and 69 intents. Figure 2.5
provides an example of an annotated utterance.

We select the scenarios as a splitting criterion to define the tasks of the
CIL setting. The full list of scenarios is: [“alarm”, “audio”, “calendar”,
“cooking”, “datetime”, “email”, “general”, “iot”, “lists”, “music”, “news”,
“play”, “qa”, “recommendation”, “social”, “takeaway”,
“transport”, “weather”]. Since the number of scenarios is limited and each
scenario provides a high-level concept associated with each utterance, we
think that they can closely resemble a practical application that must adapt
to new general domains. Additionally, since the intent classification is the
chief metric to assess our model against, the use of scenarios as splitting cri-
terion abides by the rule of having only intents related to scenarios available
in the current task. Finally, although some actions and entities can be in-
cluded in multiple scenarios, the overlap is very limited because the majority
of the entities and actions are specific to a single scenario. For example, the
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Task 1

.

.

.

x,y:                                

Scenario:   alarm          calendar   transport       
 

[Avg Acc, Avg WER,
SLU F1...]

Task 2

x,y:                                 

Scenario:   weather      news        music       
 

[Avg Acc, Avg WER,
SLU F1...]

Figure 2.6: The class-incremental learning setting for the SLURP dataset,
where 3 new scenarios are introduced in each task.

action “taxi” is only associated with the scenario “transport”, and the en-
tity “weather_descriptor” with the scenario “weather”. Figure 2.6 shows
two consecutive tasks, each introducing 3 new scenarios.

Another critical aspect is the order in which the scenarios are available to
the model. In our implementation, the order depends on the cardinality so
that the scenarios with the highest cardinality appear first. In this way, we
simulate a practical situation in which we endow the model with the sufficient
general knowledge, learning the largest scenarios first, that will be useful for
learning more specific scenarios.

2.5.3 Method

Similar to the FSC dataset we have discussed in section 2.4.2, we divided
the SLURP dataset into K distinct tasks, D = {D1, . . . ,DK}, based on
the scenario labels, so that a scenario is included in one and only one task.
The dataset Dk of the kth task comprises audio signals Xk with associated
transcriptions Yk, i.e. Dk = (Xk,Yk). We remind that the CIL setting is
challenging because the model must be able to distinguish all classes till task
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k, thus at test time the task labels are not accessible (unlike task-incremental
learning) [100].

We employ a transformer-based seq2seq ASR architecture, constituted by
a Wav2vec 2.0 encoder (WavEnc) [14] followed by a transformer decoder. Let
x = [x1, . . . , xI ] be an audio input sequence of length I, and y = [y1, . . . , yJ ]

be the corresponding output sequence of length J , with yj ∈ V , where V is
the set of all possible output subword tokens. The goal of the ASR model is
to find the most probable output sequence ŷ given the input sequence x:

ŷ = argmax
y∈Y∗

p(y|x; θ), (2.6)

where Y∗ is the set of all possible token sequences and θ represents the
parameters of the seq2seq model.

Suppose that p(y|x; θk) and p(y|x; θk−1) are the output probability dis-
tributions of the transformer decoder at task k and k − 1 parameterized by
θk and θk−1, respectively. The model at task k−1 can be seen as the teacher
model. Let also Rk be the set of rehearsal data at the beginning of task k.
In the following equations, we use x ∈ Dk in place of (x,y) ∈ Dk for brevity.
The standard training criterion of rehearsal-based CL methods consists of
minimizing the cross-entropy loss over Dk ∪Rk:

Lk
CE = −

∑
x∈Dk∪Rk

log(p(y|x; θk)). (2.7)

The main idea of KD is to transfer knowledge from the teacher network
p(y|x; θk−1) to a student model, such that the latter mimics the former’s
behavior. Basically, the KD is used to force the current model to not deviate
too much from the teacher, which retains the knowledge of the previous
tasks. We point out that the KD, unless otherwise stated, is applied to the
sole rehearsal data since the teacher can effectively predict only the data seen
in the previous tasks. We propose three different types of KDs: audio-KD,
token-KD, and seq-KD. The audio-KD works on the encoder’s output level,
whereas the other two KDs are applied to the output of the decoder. In this
way, we contrast forgetting either on the encoder or on the decoder side (or
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both, if we combine multiple KDs).
The audio-KD forces the encoder’s audio embeddings of the current task

k to resemble those from the previous task k − 1. Let WavEnc(x) ∈ Rh be
the Wav2vec 2.0 encoder output followed by a mean operation to squeeze
the temporal dimension, where h is the hidden size. We define the audio-KD
loss as:

Lk
audio-KD =

∑
x∈Rk

∥WavEncθk−1
(x)− WavEncθk(x)∥2, (2.8)

where ∥·∥ is the Euclidean distance operator. Eq. 2.8 acts as a regularization
term for the encoder.

We can apply a similar reasoning to the decoder, which predicts each word
of the transcription in an autoregressive way (in our case we use Byte-Pair
Encoding [191], so we will use the term token rather than word to refer to
the output units). The token-KD forces the current decoder to match the
token-level distribution of the teacher. This is a kind of “local” distillation in
that the student mimics the teacher for each token of the transcription. The
corresponding CE criterion is defined as:

Lk
tok-KD = −

∑
x∈Rk

J∑
j=1

p(yj|x,y<j; θk−1) log(p(yj|x,y<j; θk)), (2.9)

where y<j is the output sequence up to token j − 1.
A potential flaw of this method is that if some initial token distributions

are poorly estimated, their bias will be propagated until the end of the se-
quence. Indeed, a predicted token might be optimal at the current position
in the sequence, but as we proceed through the rest of the sentence, it might
turn out not to be the optimal one, given that later predicted positions are
not already available.

Seq-KD is an alternative approach that trains the student to generate
the same output sequence as the teacher, thus working on the sequence level.
This can be treated as a “global” distillation since we work on the whole
transcription. In practice, we generate a new set of automatic transcriptions
with the teacher model using beam search at the end of each task (“soft
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Figure 2.7: Illustration of the learning process in the proposed CIL setting.
The model from the current task (student) mimics the behavior of the teacher
model through audio, token, and sequence KD losses to counter forget-
ting.

transcriptions”), and then we use them to train the student network with the
CE criterion in the next task. Formally, we add the following CE loss:

Lk
seq-KD = −

∑
x∈Rk

log(p(ỹ|x; θk)), (2.10)

where ỹ is the output sequence generated with beam search using the teacher
model.

Overall, the total loss to be optimized for task t is:

Lt
TOT = (1− λKD)Lt

CE +
∑
k∈K

λKDLt
k, (2.11)

where K = {audio-KD, tok-KD, seq-KD} and λKD is a weighting parameter.
Depending on whether we employ a single KD or multiple ones, Eq. 2.11
changes accordingly. Figure 2.7 shows the learning process with the three
KD losses applied to the transformer architecture.
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2.5.4 Experiments and Discussion

Dataset and CIL setting. We conduct experiments on the SLURP dataset
[19] using the official train, validation, and test splits, with a ratio of 70:10:20.
In all experiments we also use slurp_synth only for training. Since very long
audio data are harmful for efficient training, we remove the training samples
longer than 7 seconds (around 0.004% of the total training dataset).

Concerning the definition of the CIL setting, we experiment on two con-
figurations: 1) the dataset is partitioned into 3 tasks, each comprising 6 sce-
narios (denoted as SLURP-3); 2) a more challenging configuration wherein
the 18 scenarios are distributed across 6 tasks (denoted as SLURP-6).

Pre-processing. As proposed in [11], the intent and entity classifica-
tion problems are treated as a sequence-to-sequence ASR task, where both
intent and entities associated with an utterance are predicted alongside its
transcription. In a sense, we build an “augmented” transcription that will be
fed to the transformer decoder, prepending the intent to the original tran-
scription, followed by the entities and the corresponding lexical values. The
special token _SEP is used to separate the intent from the entities and the
entities from the original transcription, whereas the token _FILL is used to
separate each entity from its value. If the original transcription is the one in
Fig. 2.5, then the augmented transcription becomes: music_likeness _SEP
music_genre _FILL jazz _SEP I like jazz.

Model. The encoder is the base Wav2vec 2.0 model [14] pretrained and
fine-tuned on 960 hours of Librispeech (a CNN-based feature extractor fol-
lowed by 12 transformer blocks with hidden size = 768, 8 attention heads,
2048 FFN hidden states). The feature extractor is kept frozen during the
training, whereas the transformer blocks are fine-tuned. Then, the trans-
former decoder includes 6 layers with the same parameters as the encoder.
We apply layer normalization to the input raw waveforms. The total number
of parameters of the model is around 148M.

Training. We tokenize the transcriptions using Byte-Pair Encoding
(BPE) [191], with a vocabulary size of 1k and BPE dropout = 0.1. Both
at inference time and for computing the soft labels for the KD-seq, we run
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beam search with beam width = 20. The number of epochs for each task
is {40,25,15} for SLURP-3, whereas {40,25,15,15,15,15} for SLURP-6. The
batch size is 32. We use AdamW optimizer [146] with learning rate = 5e−5

and weight decay = 0.1. We use the validation set for hyperparameters tun-
ing, and for selecting the best model for each task that is used for testing.

CL Baselines and Strategies. Our upper bound is the offline method
consisting of a single macro-task with all the scenarios (i.e. no incremen-
tal learning), while the naive fine-tuning approach, which retrains the same
model task by task, is our lower bound. We consider two different sampling
strategies for the rehearsal approach: 1) a random selection of the samples to
retain, and 2) iCaRL [182], which selects the samples closest to their moving
barycenter. We provide an example with a memory buffer of size equal to
around 5% of the training dataset, and the rest of the experiments use 1%.
Finally, we show the result for each KD strategy, as well as their various
combinations. The KD weight in Eq. 2.11 is proportional to the fraction of
rehearsal data in the mini-batch and is defined as:

λKD =

√
brehe
ball

, (2.12)

where brehe is the number of rehearsal data in the current mini-batch, and
ball is the current mini-batch size. This choice has been already explained in
section 2.4.3.

Metrics. We evaluate the proposed methods using 4 metrics: the average
intent accuracy, Avg Acc, defined as the average of the intent accuracies after
each task; the intent accuracy after the last task (Last Acc); the average
SLU F1 metric for entity classification [19]; the average word error rate,
Avg WER, after each task.

Main Results.

The performance for both CIL settings, SLURP-3 and SLURP-6, are
reported in Table 2.2. First and foremost, we note that, as expected, the
fine-tuning approach struggles in both settings, thus incurring catastrophic
forgetting. The use of a rehearsal memory (rows Rehe-5% and Rehe-1%)
proves to be very effective, even with only 1% of retained data. Therefore, in
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Table 2.2: Results in terms of Average Accuracy (↑), Last Accuracy (↑),
Average WER (↓), and SLU F1 (↑) for different strategies.

Method
SLURP-3 SLURP-6

Avg Last Avg SLU Avg Last Avg SLU
Acc Acc WER F1 Acc Acc WER F1

Offline 85.84 - 20.46 70.59 85.84 - 20.46 70.59
Fine-tuning 46.27 18.36 35.82 49.25 33.56 12.42 46.26 37.88
Rehe-5% rand 79.79 74.82 25.79 65.85 77.12 73.11 28.87 63.22
Rehe-1% rand 71.30 61.47 29.13 60.05 66.11 59.37 34.77 55.33
Rehe-1% iCaRL 71.49 61.66 28.62 60.23 67.55 62.55 33.82 56.09

+ audio-KD 72.14 63.03 28.68 61.08 68.40 62.83 32.04 58.15
+ token-KD 71.79 61.54 28.82 61.88 68.36 62.53 32.47 58.20
+ seq-KD 76.12 68.94 28.56 61.50 71.56 64.82 32.50 58.29

the following experiments we consider 1% of data in the rehearsal memory.
We also experiment with a more sophisticated sampling strategy, iCaRL
[182], which achieves noteworthy improvements, in particular for SLURP-6
(+1.44% of Avg Acc).

When we focus on the proposed KDs, we can observe that the seq-KD
leads to the most substantial improvement for both Avg and Last Acc metrics
(+4.63% and +7.28% on SLURP-3). Instead, for WER and SLU F1, all three
KDs behave similarly. Note that in our setting, previous intents are not
seen anymore, and indeed the KDs help the model remember past scenarios.
Conversely, though we expect the utterances to have some scenario-specific
words, general speech tokens are spread among the tasks, making forgetting
less critical for WER. Nevertheless, for the more challenging SLURP-6, KDs
bring a notable enhancement also in terms of WER and SLU F1.

Combining Multiple KDs. In this final section, we investigate whether
combining multiple KD approaches results in additional improvement. We
try to combine two KDs at a time, and all three KDs together. The results
for SLURP-6 are reported in Table 2.3. As expected, the best combinations
involve the use of seq-KD. Indeed, when the seq-KD is not included (audio +
token), the results are even worse than using the KDs individually. Instead,
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Table 2.3: Analysis of different KD combinations on SLURP-6.

Combination Avg Last Avg SLU
Acc Acc WER F1

audio + token 68.13 61.50 32.46 57.30
audio + seq 72.48 65.25 31.37 60.00
seq + token 72.07 63.46 33.08 58.25
audio + seq + token 71.83 65.45 32.55 58.48

the best combination is given by audio and seq KDs, the two approaches
that yield the best improvement if taken singularly. We guess that forcing
the encoder output of the current task to be similar to that of the previous
task (audio-KD) favors the cross-attention layer of the decoder to attend to
the most relevant part of the audio signals. We also mention that using all
three KDs leads to satisfactory results, yet slightly worse than seq + audio.
We think that, for this last case, since four KDs are involved, the design of
the KD weights is more cumbersome, and more experiments are necessary to
find the optimal weights.

Finally, in Figure 2.8 we show the trend of the intent accuracy task by
task for SLURP-6. We observe that the seq-KD outperforms both audio and
token KDs by a large margin on all steps, and its combination with the audio
KD leads to further accuracy enhancement.

As a last analysis, we point out that the additional computational burden
brought by the proposed KDs is limited for two reasons: 1) the KD losses
take into account only the rehearsal samples, which are just a fraction of
the entire dataset (i.e., 1%); 2) they just involve an additional forward pass
through the teacher model, which is kept frozen during the current task.

2.5.5 Final Remarks and Future Work

In this work, we defined a CIL setting for a challenging SLU dataset, SLURP.
To mitigate forgetting, we propose three different KD-based strategies work-
ing at different levels in the seq2seq model. Our extensive experiments reveal
the superior performance of the seq-KD, and that combining multiple KDs
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Figure 2.8: The trend of the intent accuracy on the observed tasks for the
SLURP-6 setting.

results in additional improvements. An interesting future direction is refin-
ing the seq-KD by exploiting multiple beam search hypotheses with their
corresponding scores.

2.6 Continual Contrastive Spoken Language Un-

derstanding [30]

2.6.1 Overview

In the previous two sections, we have studied the problem of CIL applied
to SLU. To mitigate the issue of catastrophic forgetting, we have relied on
the combination of experience replay and knowledge distillation principles. In
particular, in [32] we have formulated SLU as a seq-to-seq problem, where the
intent labels are generated along with the ASR transcriptions in an autore-
regressive manner, and proposed two effective distillation strategies applied
to the ASR decoder. However, we speculate that we can exploit the mul-
timodal (i.e., audio-text) nature of our setting to contrast forgetting at the
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audio and text encoder outputs through the combination of experience replay
and contrastive learning.

Contrastive learning [45, 166] is a popular approach in self-supervised
learning, but it can also be used in supervised learning [79] and multimodal
learning [180]. Its objective is to learn discriminative feature representa-
tions by pushing apart different samples (negatives) and bringing closer sim-
ilar ones (positives). Whereas experience replay is a well-established ap-
proach in continual learning, whereby a bunch of old training samples is
collected into a dedicated rehearsal memory buffer and interleaved with the
data from the new task [17,184], only recently has contrastive learning been
harnessed to learn representations continually. Both supervised [33,238] and
self-supervised [68, 225] contrastive learning have proven useful in lessen-
ing the catastrophic forgetting issue. In the case of supervised CIL, it has
been shown that endowing the model with contrastive learning objectives
results in more robust representations against catastrophic forgetting. For
incremental semantic segmentation, [238] and [258] propose to exploit con-
trastive learning in conjunction with knowledge distillation. For image clas-
sification, [223] advance a contrastive learning strategy based on the vision
transformer architecture for online CIL. Motivated by the effectiveness of
contrastive learning-based CIL in other domains, we propose COCONUT

: COntinual Contrastive spOken laNguage UndersTanding. COCONUT
combines experience replay and contrastive learning principles. Specifically,
COCONUT relies on two contrastive learning-based losses that operate on a
shared embedding space where the audio and text features are projected.

The first loss, coined Negative-Student Positive-Teacher (NSPT), is a
modified version of the supervised contrastive learning loss that aims to con-
solidate what the model has learned in the previous tasks. It also exploits
KD [94, 132] to guide the current model (student) to produce representa-
tions that resemble the ones obtained with the model from the previous
tasks (teacher). For this reason, this loss is computed only on the rehearsal
data (i.e., the anchors). A key difference between our loss and the standard
contrastive one is that the positive samples are computed using the teacher
(the positives only come from the rehearsal data), whereas the negatives
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Figure 2.9: Overview of COCONUT . It uses two contrastive learning-
based losses. The NSPT (negative-student positive-teacher) loss is a super-
vised contrastive distillation loss that preserves the feature representations
of the past classes for both audio and text samples. The positive and nega-
tive samples are computed with the teacher and student model, respectively.
The MM (multimodal) loss aims to align audio and text representations be-
longing to the same new class. COCONUT produces features that are more
transferable and resilient to catastrophic forgetting.

are computed with the student. In this way, we avoid stale and scattered
representations for the new data.

The second loss is inspired by the recent progress in multimodal repre-
sentation learning. Considering that for audio-text paired data, audio and
text represent the same information but in different ways, it has been shown
that aligning their representations results in better performance for vari-
ous speech-related problems [156, 243, 266]. Therefore, we propose a mul-
timodal (MM) supervised contrastive loss that, exclusively applied to the
current task’s data, brings audio and text representations belonging to the
same class into closer proximity in the shared feature space, resulting in fea-
tures that are more transferable and resilient to forgetting. An overview of
COCONUT is illustrated in Figure 2.9.

In summary, our contributions are three-fold:

• We introduce COCONUT , a continual learning method that makes
use of two supervised contrastive learning objectives to mitigate for-
getting for seq2seq SLU models. In particular, through our proposed
NSPT loss we provide a detailed study of which models (student/teacher)
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should be used at the numerator/denominator (positives/negatives) of
the contrastive loss tailored for class-incremental learning;

• We conduct extensive experiments on two popular SLU benchmarks
demonstrating that COCONUT achieves consistent improvements over
the baselines. We also show that it can be combined with KD applied
to the ASR decoder, leading to further improvements;

• Finally, we ablate the contribution of each loss and its components,
showcasing their pivotal role in COCONUT.

2.6.2 Problem Formulation

For our experiments, we define a CIL for the SLURP and FSC datasets
setting following [32] (see section 2.5.2). The only difference is the letter we
use for referring to the current task: here we use n rather than k for our
notation. Following [32], we define SLU as a ASR-SLU multi-task learning
problem. In fact, SLU is considered a more difficult task than ASR and
NLU since it involves both acoustic and semantic interpretation [211]. For
this reason, it is common practice to include an additional ASR objective
such that the SLU labels (in our case the intent labels) and the transcript
are generated in an auto-regressive fashion, resulting in a multi-task learning
setting [11,173]. By doing this, the text transcript input to the model includes
a class intent token that is specific to the actual task.

Let θ be the parameters of a seq2seq ASR model comprising an au-
dio encoder, a text encoder (i.e., embedding layer), and an ASR decoder.
Let x = [x0, . . . , xU−1] be an audio input sequence of length U , and y =

[ycls, ysep, y0, . . . , yJ−3] be the “extended” input transcript of length J , where
with the term “extended” we refer to the original transcript [y0, . . . , yJ−3] aug-
mented with the intent class token ycls and a special separation token ysep.
The goal of the ASR model is to find the most likely extended transcript
given the input sequence x:

ŷ = argmax
y∈Y∗

p(y|x; θ), (2.13)
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where Y∗ is the set of all token sequences. The predicted intent is obtained
extracting ycls from ŷ.

2.6.3 Proposed Approach

Standard Rehearsal-based Approach.
We assume the availability of a rehearsal buffer, M, in which we can store

a few samples for each class encountered in the previous tasks. During the
training phase of task n, Dn, we refer to B as a mini-batch of samples (x,y),
some of which come from the current task and others from the rehearsal
memory. The rehearsal memory is gradually filled up until we reach the last
task, so we do not need to employ any replacement strategy to make room
for the classes of the new task. To increase the variance of the audio data,
we apply SpecAug [170] to the audio waveform x as a data augmentation
transformation. We do not implement any augmentation technique for the
transcript y. We encode each modality separately through a dedicated fea-
ture encoder. An audio encoder maps each audio input into a feature vector
hA ∈ RU×dA , where dA is the audio hidden size. Similarly, a text encoder
converts each text input into a feature vector hT ∈ RJ×dT , where dT is the
text hidden size. At this point, if no specific CL losses are used, the ASR
decoder generates the output sequence in an auto-regressive fashion, cross-
attending on the audio encoder’s representations hA. Thus, at task k, we
minimize the conventional cross-entropy loss over the current mini-batch B:

LASR = − 1

|B|
∑

(x,y)∈B

log(p(y|x; θ)). (2.14)

COCONUT
Preliminaries. We introduce here some notations for our proposed ap-

proach. Since we work with audio and text sequences, we need to aggregate
the features we obtain with the encoders before computing the contrastive
loss. For the audio component hA we apply a mean operation over its se-
quence length, whereas for text we only select the feature related to the
intent token. Then, as is common practice in contrastive learning [45, 180],
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the resulting embeddings go through two separate linear projection layers
that map them into a shared embedding space. At inference time, the pro-
jection layers are discarded. Therefore, we get the projected embeddings a
and t in the following way:

a = gA(avg(hA)), t = gT(cls(hT)), (2.15)

where cls(·) is a function that extracts the feature associated with the class
token, gA(·) and gT(·) are the projection layers, a ∈ RdS and t ∈ RdS , where
dS is the dimension of the shared space.

Furthermore, we introduce some notations for the indices of samples com-
ing from the current mini-batch B. Let Ic and Ir represent the set of indices
of the new task samples and the indices of the samples from the rehearsal
memory (old task samples) in B, respectively. Also, let I = Ic ∪ Ir, and we
define P(k) as the set of indices of positive samples (i.e., samples with the
same intent token).

The objective of a standard supervised contrastive loss (SCL) [113] is to
push the representations of samples with different classes (negative pairs)
farther apart while clustering representation of samples with the same class
(positive pairs) closely together. Suppose that we get from the projection
layers a generic representation zDi for the i-th element in the batch, where z =

{a, t} and the superscript D denotes whether the representation is computed
with the teacher or student model. A generic formulation of the SCL loss
takes the following form:

LSCL =
∑
k∈I

−1

|P(k)|
∑

p∈P(k)

log
exp(zDk · zDp /τ)∑
i∈I exp(zDk · zDi /τ)

, (2.16)

τ ∈ R+ is a fixed temperature scaling parameter.

Supervised Contrastive Distillation Loss (NSPT). This loss com-
bines the benefits of KD with those of contrastive learning [202, 206]. We
recall that KD-based methods are very popular in CL and they exploit this
paradigm to penalize changes to the model’s intermediate or final outputs
by fostering the pass of the knowledge accrued in the teacher model onto the
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student [27,61,182]. Commonly, we denote with teacher the model trained in
the previous task, and with student that trained in the current task. There-
fore, since the teacher conveys information about the previous classes, we
would like to use it as a guide for the student through a KD objective. In
this way, the loss encourages the student to produce audio and text embed-
dings consistent with those obtained by the teacher. For this reason, only the
rehearsal samples are involved in this process as the teacher had no chance
to see the current data. Additionally, we want to pull closer embeddings
sharing the same intent class (i.e. the positives), while we push away the
others (i.e. the negatives, whose class is different). This is obtained via a
modified version of the standard supervised contrastive loss tailored for our
setting. In fact, a standard one would use the teacher to compute both the
positives and the negatives [113]. However, since the teacher is frozen and
it is pointless to compute the representations of the samples from the cur-
rent task using the teacher, we propose to use the student for computing the
representations of the negatives. A small fraction of negatives come from
the rehearsal buffer, and we also compute them using the student. We show
in the ablation studies of section 2.6.6 that using the teacher deteriorates
the performance. Therefore, our contrastive distillation loss computes the
embeddings of the anchor and its corresponding negatives using the student,
while the positives come from the teacher (we call this loss Negative-Student
Positive-Teacher, NSPT). On the contrary, for the standard contrastive loss
both the positives and negatives are computed with the teacher (we call it
Negative-Teacher Positive-Teacher, NTPT). Figure 2.10 illustrates visually
how the NTPT and NSPT work in the shared embedding space. The NSPT
loss is computed for both audio and text embeddings, leading to two com-
ponents, one for each modality, as follows:

LNSPT =
∑
k∈Ir

−1

|P(k)|
∑

p∈P(k)

[
log

exp(an
k · an−1

p /τ)∑
i∈I exp(an

k · an
i /τ)︸ ︷︷ ︸

LA

+ log
exp(tnk · tn−1

p /τ)∑
i∈I exp(tnk · tni /τ)︸ ︷︷ ︸

LT

]
,

(2.17)
where n and n − 1 denote whether the representation is obtained with the
student or teacher, and LA and LT represent the audio and text contributions,
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Figure 2.10: Illustration of the NTPT loss and our proposed NSPT loss.
Given an anchor sample from the current mini-batch, the NTPT loss com-
putes the negatives and positives using the teacher model (dashed circles).
Instead, the NSPT loss computes the positives with the teacher while the neg-
atives are computed with the student model (solid circles). If the features
obtained with the teacher are scattered and static (the teacher is frozen),
those obtained with the student are more clustered and can be learned dur-
ing the current task. Best viewed in color.

respectively. We empirically validate that the intuition of the NSPT loss is
beneficial in the ablation studies of section 2.6.6.

Supervised Multimodal Contrastive Loss. This loss is introduced
for two reasons. First of all, since during the first task (no CL) the NSPT
loss is not computed (i.e., we do not have a teacher yet), this means that the
projector layers of the model are not trained. This would be a problem from
the second task onwards in that the student would distill the knowledge from
the teacher with randomly initialized projectors. Second, we want to exploit
the multimodal nature of our SLU CIL setting. Consequently, we introduce
a multimodal (MM) loss that aims to align audio and text representations
belonging to the same new class, and thus training the projectors of the
model from the very beginning. This alignment is achieved via a supervised
multimodal (i.e., audio-text) contrastive learning objective where feature rep-
resentations of samples sharing the same intent token are attracted while the
others are pushed away. Similar to [121], we use the [CLS] text token (ycls)
for performing the multimodal alignment. Furthermore, following [33], we
always treat the rehearsal samples as negatives, preventing them from being
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anchors during the learning process. This design choice is buttressed by two
motivations: 1) rehearsal data have been learned by the previous model al-
ready and are preserved via the NSPT loss, and 2) we encourage the model
to produce clusters for the new data that are separated from those of the
rehearsal data. The MM loss is defined as:

LMM =
∑
k∈Ic

−1

|P(k)|
∑

p∈P(k)

[
log

exp(an
k · tnp/τ)∑

i∈I exp(an
k · tni /τ)

+ log
exp(tnk · an

p/τ)∑
i∈I exp(tnk · an

i /τ)

]
. (2.18)

The first term of the internal loss is the audio-to-text component, whereas the
second is the text-to-audio component [255]. The presence of both directions
(A → T and T → A) makes the MM loss symmetric. All in all, COCONUT
minimizes the following loss:

L = LASR + λMMLMM + λNSPTLNSPT, (2.19)

where lambdas are loss-specific weights. Note that during the first task LNSPT

is not computed.

2.6.4 Experimental Setup and Implementation Details

Datasets and CIL Setting. We evaluate COCONUT on two SLU datasets:
the Fluent Speech Commands (FSC) [147] and the Spoken Language Un-
derstanding Resource Package (SLURP) [19]. FSC includes 30,043 English
utterances, recorded at 16 kHz, resulting in 31 intent classes in total. The
SLURP dataset comprises around 56 hours of audio of people interacting
with a home assistant (slurp_real), with the addition of 43.5 hours of syn-
thetic data (slurp_synth). It is considered the most challenging SLU dataset
due to its lexical complexity. Each utterance is annotated with 3 semantics:
scenario, action, and entity. The pair (scenario, action) defines an intent.
Overall, there are 18 scenarios and 69 intents. For our experiments, we only
perform intent classification. Following [32], we use the scenario labels as
splitting criterion to define the CIL setting. We experiment on two configu-
rations: 1) the datasets are partitioned into 3 tasks, each task comprising 6
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scenarios for SLURP (denoted as SLURP-3), and 10 intents for FSC (FSC-
3); 2) a more challenging configuration with 6 tasks, each task including 3

scenarios for SLURP (SLURP-6), and 5 intents for FSC (FSC-6).

Implementation Details. For both datasets, the text encoder is a
standard text embedding layer with size 768. For the audio encoder, we use
a Wav2vec 2.0 base model [14] pre-trained and fine-tuned on 960 hours of
Librispeech for SLURP (∼ 94.3M parameters), while we use DistilHuBERT
base [35] for FSC (∼ 23.5M parameters). Both encoders have hidden sizes
of 768. Since FSC is a less challenging dataset than SLURP, we found that
a smaller pre-trained encoder is sufficient to achieve state-of-the-art results.
Moreover, experimenting with diverse architectures helps evaluate the gener-
alizability of our proposed method. As in [180], we employ linear projection
layers to map from each encoder’s representation to the audio-text embed-
ding space, whose dimension is 512. The ASR decoder is transformer-based
with 6 layers, hidden size equal to 768, 8 attention heads, and the dimension
of the feedforward layers is 2048. We set the temperature τ to 0.1 for both
NSPT and MM loss. We train our models with AdamW optimizer [146], and
we set the learning rate = 5e−4 for the text encoder, the ASR decoder and
the classifier, while for the audio encoder we use a smaller learning rate, 5e−5,
because it is pre-trained.

For the tokenization we apply Byte-Pair Encoding (BPE) [191] for SLURP,
with a vocabulary size of 1000 and BPE dropout equal to 0.1, whereas for
FSC, given the limited number of unique words, we use word tokenization,
resulting in 139 tokens. BPE automatically assigns to each intent a dedicated
token, whereas for FSC we manually add the intent tokens. Regarding the
weight coefficients, we set λMM to 0.1, and similarly to [63,232] we set λNSPT

to Lp

Lp+Ln
, where Lp and Ln count the number of past and new classes.

Baselines. Apart from the standard offline (1 task, no continual) and
fine-tuning (no CL strategies) baselines, we compare COCONUT against
standard experience replay (ER) methods with random and iCaRL [182]
sampling strategies. We note that ER is already a strong baseline for FSC
and SLURP. We also point out that adapting standard CL strategies to
our setting is not trivial as they are usually proposed for classification tasks
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Table 2.4: Results in terms of Average Accuracy (↑), Last Accuracy (↑),
and Average WER (↓) for different strategies on FSC and SLURP datasets.
All CL methods exploit a buffer whose size is 1% of the training dataset.
Bold and underscore numbers denote the best and second best method for
a specific setting and metric, respectively. We show in the last row that
COCONUT and S-KD can be used together, leading to the best results. For
simplicity, the values of the last row are not in bold even though attain the
best results.

Setting → FSC-3 FSC-6 SLURP-3 SLURP-6

Metric → Avg Last Avg Avg Last Avg Avg Last Avg Avg Last Avg
Method ↓ Acc Acc WER Acc Acc WER Acc Acc WER Acc Acc WER

Offline 99.28 - 0.48 99.28 - 0.48 84.41 - 17.65 84.41 - 17.65
Fine-tuning 49.13 17.61 36.37 29.92 7.59 54.66 46.65 18.42 28.32 31.90 10.57 34.79
ER rand 79.17 69.81 15.87 68.61 63.71 24.04 71.44 61.88 21.25 66.57 58.22 24.50
ER iCaRL 82.04 74.00 13.45 69.76 64.12 23.22 71.94 63.22 21.06 68.08 62.29 26.05
T-KD 82.11 75.43 12.95 69.08 64.73 23.82 72.44 62.43 21.19 66.95 60.47 24.26
A-KD 84.79 78.12 11.54 73.54 67.05 20.36 72.10 63.84 20.67 68.52 62.51 24.29
S-KD 84.29 75.31 12.39 73.65 67.71 21.27 74.28 65.95 21.26 69.91 63.22 24.26
COCONUT 86.39 80.21 11.08 77.09 73.80 19.05 72.75 64.62 21.25 70.17 63.66 24.29
COCONUT+S-KD 87.64 80.45 10.49 77.57 74.01 18.47 75.58 67.39 20.61 71.91 65.41 24.16

and not for auto-regressive tasks. Plus, we report two methods proposed
in [32] that combine rehearsal and KD principles: audio-KD (A-KD) that
applies the KD on the audio features of the rehearsal samples, and seq-KD
(S-KD) that, at the end of the current task, stores the text transcriptions
computed with beam search only for the rehearsal samples and use them as
pseudo-transcriptions for the next task. This method operates on the ASR
decoder. For the sake of completeness, we also report text-KD (T-KD), the
text counterpart of the A-KD.

Metrics. Following [63], we report the results in terms of the Avg Acc,
which is the average of the intent accuracies after each training task, and the
Last Acc, which is the intent accuracy after the last task. We also report
the Avg WER, the average of the Word Error Rate (WER) of the extended
transcription after each task.

2.6.5 Main Results

In the first two rows of Table 2.4, we include the upper and lower bounds
represented by the offline learning (which is in line with the state-of-the-art)
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Figure 2.11: Left : the trend of the intent accuracy on the observed tasks for
the FSC-6 setting. Right : the trend of the intent accuracy on the observed
tasks for SLURP-6.

and fine-tuning approaches. For the fine-tuning approach, we can notice how
catastrophic forgetting deteriorates the knowledge of the prior classes. We
then include ER baselines with buffer capacity equal to 1% of the dataset size.
From these results we can see that ER-based methods achieve good results for
all metrics and configurations, confirming themselves as solid baselines. For
FSC, COCONUT outperforms the other baselines by a significant margin,
in terms of both accuracy and WER. Its combination with the S-KD leads
to additional improvements (last row).

If we turn our focus to SLURP we see that, for the setting with 3 tasks, S-
KD turns out to be the best approach in terms of intent accuracy, followed by
COCONUT. For the WER, all the methods achieve similar performance and
do not provide significant enhancements. We speculate that, as only some
words are task-specific while the others are spread across multiple tasks, the
text modality is less affected by forgetting. It is also compelling to note that
the A-KD always achieves better performance than T-KD, a trend that will
also be observed for the NSPT loss in the ablation studies. For SLURP-6,
COCONUT slightly surpasses S-KD in terms of accuracy, and performs on
par with the others for the WER metric. This indicates that COCONUT
scales properly with the number of tasks. Additionally, we point out that,
for SLURP, COCONUT provides less noticeable improvements than FSC.
This can be attributable to the higher complexity of the dataset due to its
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Figure 2.12: Left : the trend of the WER on the observed tasks for the FSC-6
setting. Right : the accuracy of COCONUT and other methods as a function
of the memory size.

larger dictionary and to the larger number of intents with respect to FSC
(69 vs. 31). Finally, similar to FSC, the combination of COCONUT with
S-KD attains the best results, confirming that fighting forgetting both at the
encoders and ASR decoder is an effective solution.

In Fig. 2.11 we illustrate the trend of the intent accuracy after each task
for FSC-6 and SLURP-6. For FSC-6, COCONUT outperforms the other
baselines by a large margin after each task. For SLURP-6, COCONUT has
a similar trend as S-KD, and their combination leads to a noteworthy boost
in performance. On the left part of Fig. 2.12 we also show the trend of the
WER task by task.

2.6.6 Ablation Study

.

Is COCONUT effective when we vary the buffer memory size?
In the right side of Fig. 2.12, we study the trend of COCONUT for different
quantities of rehearsal samples per class for the setting FSC-6. Note that 8

samples per class is equivalent to a buffer capacity of 1% of the entire training
dataset. The maximum gain provided by COCONUT with respect to the ER
baseline is reached for 4 and 8 samples per class (9.27 and 6.69, respectively),
while for the extreme cases of 2 and 30 samples, the gap is reduced. This is
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Table 2.5: The accuracy of COCONUT and other methods as a function of
the memory size for the setting SLURP-6.

Method Examples per class

650 1260 2500

iCaRL 59.94 61.87 63.38
COCONUT 68.08 70.17 71.91
COCONUT + S-KD 70.15 71.41 72.10

explained by the fact that when few samples are stored for each class, the
effect of the NSPT loss is highly reduced given its reliance on the rehearsal
data, whilst in the opposite case the abundance of rehearsal data makes the
ER baseline already strong, thereby improving it becomes more challenging.
Regarding the latter case we note that when we increase the buffer memory
size, we implicitly move toward the offline setting (the upper bound), which
is not the objective of this work. In addition to this, we provide a similar
study for SLURP-6 in Table 2.5. Note that 1260 samples corresponds to 1%
of the training data, which is the % we used for our main results. Similar
to what we obtained for the FSC dataset, we see that, as we increase the
number of retained samples to 2500, the gain brought by COCONUT and its
combination with S-KD is a bit smaller but still significant, and this happens
because the iCaRL method becomes a stronger and stronger baseline as we
increase the % of data. Also, we notice that adding the S-KD approach is
more beneficial when we have fewer samples in the memory since the task is
way more challenging.

Ablation on the NSPT Loss. In Table 2.6 we evaluate the difference
in performance between the standard NTPT loss and our proposed NSPT
loss and some of its variants. Specifically, we study two design properties: 1)
which samples should be used as anchors? 2) Should the rehearsal negatives
be computed using the teacher model rather than the student, unlike the
negatives coming from the new task? Regarding point (1), we study the
case where the anchor samples are both the rehearsal data (our proposed
design) and the new data. This means that in the outer sum of Equation
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Table 2.6: Ablation on the use of NSPT and NTPT losses.

Dataset → FSC-6 SLURP-6

Metric → Avg Last Avg Last
Method ↓ Acc Acc Acc Acc

ER iCaRL 69.76 64.12 68.08 62.29
MM 71.12 67.76 68.78 62.94
MM + NTPT 74.05 67.61 68.91 62.57
MM + NSPT-AA 76.30 72.34 69.74 62.54
MM + NSPT-AN 66.37 63.89 64.72 56.84
MM + NSPT 77.09 73.80 70.17 63.66

2.17 the samples are picked from I. Note that this design choice requires to
compute the loss for all samples in the dataset, thus incurring an appreciable
increase in the computational cost. We denote this variant where we Ablate
the Anchor design as NSPT-AA. As for the second point, we compute the
negatives coming from the rehearsal memory using the teacher (the teacher
has seen those classes in the previous tasks), whereas the samples from the
current task are computed with the student model. The denominators of
Equation 2.17 become (we use z to refer to both a and t):

∑
i∈Ic exp(z

n
k ·

zni /τ) +
∑

h∈Ir exp(z
n
k · zn−1

h /τ). We call it NSPT-AN (Ablate Negatives).
Looking at Table 2.6, we see that for FSC-6, the use of our proposed

NSPT loss gives a considerable improvement over the NTPT loss in terms
of all three considered metrics. For SLURP-6, the trend is maintained, and
now the NTPT even brings a small deterioration over the MM baseline in
terms of Last Acc. Also, the MM loss alone contributes positively over the
ER baseline for both settings. We recall that it is not possible to study
the individual contribution of the NSPT loss because, without the MM loss,
the teacher projectors are randomly initialized during the second task (see
section 2.6.3). Furthermore, we observe that the design choices of (1) and
(2) are crucial to obtaining superior performance. Regarding the NSPT-AA
loss, the model is less sensitive to this design choice. However, note that
this loss is more expensive as it requires extra computational cost owing to
the use of all samples in a mini-batch for its computation, thus making it
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Table 2.7: Ablation study of the MM (upper part) and NSPT (bottom part)
components. CLS: whether only the intent class token is used; Anchor:
whether ER data are excluded from the anchors. LA/LT: whether the au-
dio/text component of NSPT loss is used.

CLS Anchor LA LT Avg Acc

70.10
✓ 70.49

✓ 71.09
✓ ✓ 71.12
✓ ✓ ✓ 76.84
✓ ✓ ✓ 73.11
✓ ✓ ✓ ✓ 77.09

less appealing than our proposed NSPT loss. Instead, the use of the NSPT-
AN yields a severe degradation in the performance. We suspect that this
happens because mixing the teacher and student at the denominators makes
the learning process more complex as feature representations of different
models interact, inducing more interference and thus leading the model to
make more mistakes.

Ablation on the MM Loss. Finally, in Table 2.7 we study the design
properties of the MM loss on FSC-6, and with its best configuration, we
determine the individual contribution of the audio and text components to
the NSPT loss. For the MM loss, we see that using the intent token and
preventing the ER data from being anchors brings additional improvements.
For the NSPT loss, as was evident for the A-KD and T-KD, with the former
giving better results, here we also discover that the audio component is pre-
dominant. Plus, the concurrent use of both components brings a moderate
increase in accuracy, and this is due to the alignment between audio and text
via the MM loss.

On the Impact of the Temperature Parameter. In this section we
analyze the role of the temperature parameter in the CIL process for the
MM loss (see Equation 2.18) on the FSC-6 setting. We first try to set
the value beforehand (0.07, 0.1, 0.2), and then we make the temperature
a learnable hyperparameter (initial value is 0.07). Results are reported in
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Table 2.8: Ablation study of the temperature τ for the MM loss. We experi-
ment on FSC-6 by setting τ beforehand and making it a learnable hyperpa-
rameter as is common practice in offline settings [180]. The light-blue row
corresponds to the value we used for our experiments.

Metric → Avg Last Avg
Temp(τ) ↓ Acc Acc WER

0.07 71.06 64.75 22.07
0.1 71.12 67.76 22.88
0.2 71.01 62.35 22.78
Learnable 69.05 66.33 24.57

Table 2.8. We can observe that τ = 0.1 is the best configuration for the
accuracy metric. Note that, however, the model does not seem very sensitive
to the temperature for the Avg Acc, whereas the Last Acc is more influenced.
Since the Avg Acc does not change much across the three configurations, yet
the Last Acc sways much more, this means that for τ = 0.1 the model
struggles more during the initial tasks, but it performs better towards the
end of the learning process. On the other hand, learning τ task by task does
not seem to be the right choice as the Avg Acc and WER metrics deteriorate
with respect to the other three configurations where it is fixed. In fact, we
observed that during the first tasks, the model is learning the optimal value
for τ until it finds it (this value approximately lies in the range 0.134−0.142).
This initial transitional phase penalizes the accuracy of the first tasks, which
in turn leads to a deterioration in the Avg Acc metric.

2.6.7 Final Remarks and Future Work

In this work, we presented COCONUT , a CIL approach that exploits
experience replay and contrastive learning paradigms to mitigate forgetting
for the problem of E2E class-incremental SLU using a seq-2-seq model. On
the one hand, it preserves the previously learned feature representations via
an ad-hoc supervised contrastive distillation loss, on the other it contributes
to aligning audio and text representations, thus resulting in more transfer-
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able and robust to catastrophic forgetting representations. We show that
COCONUT outperforms the other baselines and that synergizes with other
KD techniques operating on the decoder side. We finally dissect the design
choices of COCONUT through specific ablation studies, showcasing that each
component is pivotal to attain the best results. Regarding future directions,
we note that in principle COCONUT can be exploited in other multimodal
settings such as audio-vision or vision-language. Therefore, it would be in-
teresting to study how to exploit COCONUT in other different multimodal
scenarios. Also, since these settings usually involve a larger number of classes
than ours, we would be able to test how COCONUT scales to the number of
tasks.

2.7 Improving Continual Learning of Acoustic

Scene Classification Via Mutual Informa-

tion Optimization [239]

2.7.1 Overview

Acoustic scene classification (ASC) refers to the ability of humans or ma-
chines to recognize an environmental sound in a set of acoustic scene classes
[18]. Similar to SLU, even though the performance of deep neural network-
based models has outperformed humans on this specific task [163], the success
of existing ASC models has mostly relied on training with a large fixed set of
data and pre-defined acoustic scene classes [18,175,205]. In contrast, humans
are intrinsically capable of learning from streams of data with unseen classes,
so that they can adapt themselves to the complex environment and evolve
their knowledge in a lifelong manner [218].

From the perspective of human perception, recognizing an unseen acoustic
scene can be regarded as an ensemble of background noises and sound events
[212]. Then humans can associate new sound categories with specific acoustic
scenes based on their extensive life experiences. Furthermore, [93] showed
that the perception of acoustic scenes in human brains is organized in terms

52



Chapter 2. Class-Incremental Spoken Language Understanding

of a general feature match between sounds and the referents in their memory.
Therefore, we base our ASC model on the replay-based continual learning
approaches, which save a small subset of past data into a memory buffer and
replay samples of the memory when it encounters new tasks in the subsequent
training process.

Specifically, in this work, we focus on the under-explored domain of
continual learning in acoustic scene classification and propose to improve
both the training process and the memory selection procedure in our ASC
model from the perspective of mutual information (MI) optimization. MI
quantifies the amount of information between two variables and has been
proven to be helpful in representation learning from an information-theoretic
view [13,22,92,166,210]. We base the optimization of MI on an architecture
with a feature extractor followed by a classifier, similar to the architecture
used in 2.4.2. Since feature extraction is to disentangle many distinct but
informative factors from the data [21], we would like the feature extractor to
learn generalized representations of the input audio that is agnostic to acous-
tic scene classes. Meanwhile, we would like the classifier to learn to map the
extracted representations to the correct classes. This section demonstrates
that mutual information can help the feature extractor learn task-agnostic
knowledge while helping the classifier learn task-specific knowledge. For the
feature extractor part, we first present that it is theoretically sound to learn
task-agnostic knowledge by maximizing the MI between the feature repre-
sentations of the original input and an augmented acoustic scene of the same
input. For the classifier part, we show that by selecting the memory sam-
ples with a combination of surprise and learnability criteria, the samples are
expected to be both representative and informative to boost the continual
learning performance of the ASC model. We evaluate our method on mul-
tiple datasets and continual learning metrics, showing that it can not only
decrease the forgetting effect by learning task-specific knowledge, but im-
prove the generalizability of the model by learning task-agnostic knowledge
as well.
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2.7.2 Method

Problem Statement. Similar to the previous sections, we study a CIL
scenario, where now new classes of acoustic scenes keep appearing in con-
tinuous streams of data. Since CIL does not have access to task identities
during inference time, its objective is to build a holistic classifier among all
of the seen classes by making use of the label information only.

In our context, a task is defined by a set of train and test data that follows
a similar distribution, and in practice, it usually refers to a new set of data
that contains data in different classes. For example, one task may consist of
acoustic scenes from various vehicles, and another task may include sound
events from animals. Consider we have the data streams X = {Xt}Tt=1 and
its corresponding labels {Yt}Tt=1, where Xt indicates the data at task t and
T is the total number of tasks. Note that Y gt

ti ∩ Y gt
tj = ∅ for all ti ̸= tj under

this setting. For the modeling, we use an architecture of a feature extractor
Φ and a classifier Θ, where the output of the feature extractor is Φ(X) = Z,
which is the feature representation of X and also the input of the classifier
such that Θ(Z) = Y , where Y indicates the predicted logits.

At the end of each task t, we inject samples of the input Xt into a memory
buffer with a fixed size M , and the memory will be used to select samples for
the purpose of replay when the model is learning on subsequent tasks. We
will demonstrate the comparison between different sample selection strategies
in section 2.7.3.

Augmented Acoustic Scenes. Our mutual information optimization
relies on the comparisons between different augmented representations of
acoustic scenes, which are also called pseudo-labeled samples. In MI esti-
mation, the augmentations of the same input will be regarded as positive
pairs, while those of different inputs are taken as negative pairs, such that
the dependency between positive pairs will be maximized and that between
negative pairs will be minimized [166]. Following the notations in the previ-
ous subsection, we will denote Z as the feature representation of the original
input X, and Z ′ as the encoded feature of an augmentation of input X ′. In
this work, we simulate the pseudo-labeled samples through different augmen-
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tation methods. More specifically, we choose to add Gaussian noise, apply
band-stop filtering, or invert along the time axis to perform multiple types
of augmentations.

Modeling and Memory Selection via Mutual Information Op-
timization. By employing an arbitrary model architecture of a feature
extractor followed by a classifier, we show that our mutual information op-
timization can be applied to both modules of the model. We would like
the feature extractor Φ to learn task-agnostic knowledge to produce effective
latent representations of the input audio, while the classifier Θ to learn task-
specific knowledge to map the learned representations to specific acoustic
scene classes.

Feature extractor part: To let the feature extractor learn task-agnostic
knowledge, we need to guarantee that the encoded representations preserve
sufficient information from the original inputs regardless of their classes.
Therefore, we will want to maximize the MI between X and Z, so that
Z will preserve generic information from X in the modeling of the feature
extractor. To better estimate the MI, we have augmented acoustic scenes X ′

and its corresponding latent representation Z ′. Assuming that Z and Z ′ are
conditional independent given data X, we have:

I(X;Z) = H(Z)−H(Z|X)

= H(Z)−H(Z|X,Z ′)

≥ H(Z)−H(Z|Z ′) = I(Z;Z ′),

(2.20)

where I(·, ·) indicates the mutual information between two variables and H(·)
denotes the Shannon entropy or conditional entropy given another random
variable. We use the property of conditional independence from Line 1 to
Line 2, and the definition of conditional entropy from Line 2 to Line 3. We
use the property of conditional independence from Line 1 to Line 2, and the
definition of conditional entropy from Line 2 to Line 3. Therefore, we have
I(X;Z) ≥ I(Z;Z ′) from Eq. 2.20, which means that maximizing the MI
between Z and Z ′ is equivalent to maximizing the lower bound of the MI
between input X and the encoded features Z.

Taking a further step, as from [166], the mutual information between Z
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and its augmentation Z ′ can be estimated through the InfoNCE (NCE stands
for noise-contrastive estimation) loss as the lower bound, i.e.,

I(Z,Z ′) ≥ logN +
1

N

N∑
i=1

log
(f(zi, z

′
i)/τ)∑N

j=1(f(zi, z
′
j)/τ)︸ ︷︷ ︸

≜LNCE(Z,Z′)

,
(2.21)

where zi is the representation of an individual sample in the batch. zi and
z′i are regarded as positive sample pairs since they originated from the same
sample xi, and all other z′js in the batch where i ̸= j are regarded as negative
pairs. f denotes the exponential of similarity function and τ is the temper-
ature parameter. N is the batch size of the samples, and when it becomes
larger, I(Z,Z ′) will close its gap to the lower bound. Therefore, I(Z,Z ′) is
lower bounded by the InfoNCE loss and we will use the second term on the
right-hand side as the approximation of MI in our implementations. Overall,
in addition to the task supervision loss, we add the MI estimation to the
objective function to train the model as

Ltotal = LCE(Θ(Φ(X)), Y ) + λLNCE(Z,Z
′), (2.22)

where LCE(·, ·) denotes the cross entropy loss between the predicted and the
ground-truth class logits, and λ is the hyperparameter.

Classifier part: The classifier takes the latent representation Z as input
and predicts the logits Y . In contrast to the feature extractor where the
primary goal is to capture task-agnostic features, since we would like the
classifier to learn task-specific knowledge, we need to wisely select the sam-
ples from the memory, such that they can not only bring extra information
but also make sure the new information can be learned by the model. Two
criteria, surprise and learnability, can be formalized by measuring the pre-
dictive distribution of the new sample with respect to those in the memory to
decide its usefulness [201]. In our work, we measure the information carried
by memory samples by estimating the MI between the encoded representa-
tion Z and the predicted logits Y . In this case, it differs from the original
InfoNCE loss with additional information Y . Since we would like to train
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the classifier to learn task-specific knowledge given the label information, we
use Y additionally to determine positive and negative sample pairs. If we
further incorporate the label information Y into Eq. 2.21, for each sample
feature zi, we consider zk as positively paired sample for all yk = yi. In other
words, samples with the same predicted labels with respect to sample i will
be constructed as positive pairs. Meanwhile, all pairs of the original and aug-
mented representations zk and z′k, along with the augmented representation
z′i, are regarded as positive pairs with respect to zi, while others are taken
as negative pairs, i.e.,

LNCE(Z, {Z ′}, Y ) =
1

N

N∑
i=1

[
1

N∑
k=1

1(yk = yi)

∑
yk=yi

(
∑

ẑi∈Szi

log(f(zi, ẑi)/τ)

− log

N∑
j=1

(
∑

ẑj∈Szj

f(zj , ẑj)/τ))],

(2.23)

where Szi indicates the set of all of the original and augmented views of the
sample zk that has the same label with zi, along with the augmented view of
itself z′i. The 1(·) function returns 1 if the condition is true and 0 otherwise.
Note that here we use the notations of sets, {Z ′}, to indicate that more than
one type of augmentation techniques can be considered.

When we are selecting from the memory at task t, we would like to select
the samples that are both representative and informative. It not only needs
to carry new information to the existing model, but also should have a high
learnability instead of becoming an outlier. To achieve this, we assign a score
to the samples and select the samples with the highest scores as:

scoret(Y, Z) = −LNCE(Zt−1, {Z ′
t−1}, Yt−1) + LNCE(Zt, {Z ′

t}, Yt). (2.24)

The first term on the right-hand side of Eq. 2.24 indicates that we would
like to be more likely to select samples that minimize the mutual information
between Z and Z ′, given the class logits by the previous model at task t− 1.
In other words, the samples that are more surprising to the model are favored.
Similarly, the second term indicates that the samples with higher learnability
are more probably to be sampled, since they maximize the MI between Z and
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Z ′ given Y by the current model, which aligns with our objective function. In
this way, we will be more likely to select samples that are both representative
and informative, so that the model can effectively recall past knowledge and
learn from new information at the same time.

2.7.3 Experiments

Datasets. We use the TAU Urban Acoustic Scenes 2022 [91] and Environ-
mental Sound Classification (ESC)-50 [176] as our datasets. TAU Urban
Acoustic Scenes consists of 10 classes of acoustic scenes in total, with around
1000 samples for each class. Its acoustic scene classes are mainly about trans-
portation and city noises. ESC-50 is a smaller dataset that is made up of
5-second-long recordings in 50 semantical classes, with 40 samples for each
class. This dataset mainly covers the sounds from animals, humans and daily
activities, etc. The diversity of these datasets helps us validate the effective-
ness of our continual learning methods under different settings. For the task
splitting, we split the 10 or 50 classes in the two datasets into 5 sequential
tasks {Xt, Y

gt
t }5t=1. Each task contains 2 or 10 different classes respectively.

Baselines. We evaluate the continual learning performance of acous-
tic scene classification with multiple baseline approaches together with our
proposed method as in Tables 2.9 and 2.10. Fine-tune means the offline
training without any continual learning approaches performed, which is the
lower bound of our performance. Random is to randomly select samples
from the memory with an equal probability. Herding indicates herding the
embeddings of samples and selects those who are closest to the center of
their corresponding class [182]. GSS refers to gradient-based sample selec-
tion, which aims to maximize the diversity of the gradients of the samples in
the memory buffer [8]. Uncertainty calculates the uncertainty score of each
sample based on the prototypes from the herding method, and selects the
samples that the model is less confident of [234]. We will compare the per-
formance of our proposed method with these baselines as different memory
selection mechanisms in replay-based continual learning methods.

Experimental Setup. For our feature extractor, we use a Temporal
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Convolutional Network (TCN) [16] as the feature extractor and a linear layer
as the classifier. The feature extractor takes in the log-Mel spectrogram of the
audio input, computed by a Hanning window with the window length of 25ms
and the hop length of 10ms. The latent representation Z is represented as
100-dim embedding vectors, which are used to compute the scoring function
to sample from the memory. We train the model for 50 epochs for each task
with an Adam optimizer [115] and an initial learning rate of 5e−4. We use
the temperature τ = 1.0 for all the experiments.

Evaluation Metrics. Aside from average classification accuracy (Acc),
we use backward transfer (BWT) and forward transfer (FWT) as the evalua-
tion metrics [57] to show that our method helps not only learn task-agnostic
knowledge, but also preserve the task-specific knowledge. BWT measures
the influence of learning task t on the accuracies of all previous tasks i < t.
The calculation of BWT at task t is defined as:

BWTt =
2

t(t− 1)

t∑
i=2

i−1∑
j=1

(at,i − ai,i), t ∈ {2, · · · , T}

where ai,j denotes the accuracy of task j after learning task i. On the con-
trary, FWT measures the generalizability of the model by computing the
influence of learning task t on the accuracies of future tasks. From [145], we
have:

FWTt =
1

t− 1

t∑
i=2

(ai−1,i − āi), t ∈ {2, · · · , T}

where āi indicates the test accuracy at task i with random initialization.
Overall, a higher BWT score means a smaller forgetting effect of the model
on past task-specific knowledge, while a higher FWT score means a higher
generalizability of the model on task-agnostic knowledge to benefit unseen
tasks.

Results and Discussion. The experimental results on the TAU Urban
Acoustic Scene dataset are shown in Table 2.9. The row of fine-tune suffers
from catastrophic forgetting, and its accuracy is close to a random guess
since we have 5 tasks in total. It is the lower bound of our continual learning
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Method
Memory

Size Acc ↑ BWT ↑ FWT ↑

fine-tune - 20.4 -56.0 0.0

Random
0.2k 42.8 -28.5 49.8
0.5k 49.8 -27.8 54.3
1k 52.6 -27.0 59.2

Herding [182]
0.2k 51.6 -26.9 56.0
0.5k 54.3 -26.3 63.3
1k 56.2 -24.8 65.2

GSS [8]
0.2k 51.9 -25.3 56.5
0.5k 54.6 -25.8 62.9
1k 56.1 -24.6 63.7

Uncertainty [235]
0.2k 55.9 -24.5 63.8
0.5k 57.6 -23.7 67.5
1k 58.9 -22.8 69.0

MIO (Ours)
0.2k 58.0 -23.5 64.7
0.5k 60.7 -22.9 69.1
1k 64.1 -22.5 74.8

Table 2.9: Results for continual learning on TAU Urban Acoustic Scenes with
different memory selection methods and sizes.

performances. For the rest of the rows, we can observe that our proposed
mutual information optimization (MIO) method achieves the highest score
of Acc, BWT, FWT than other memory selection methods, which indicates
that it can not only retain the task-specific knowledge in the past, but gen-
eralize the task-agnostic knowledge to future unseen classes as well. Another
observation is that our method benefits more from a larger memory size, with
a higher performance gain from a smaller memory size to a larger one. This
intuition aligns well with the property of the estimates of mutual information
in Eq. 2.21, where the estimated MI approaches its lower bound when the
number of samples N becomes larger.

Table 2.10 presents the results on the ESC-50 dataset with the same set
of evaluation metrics. Overall, we can observe a similar tendency with the
results in Table 2.9, except that the accuracies become lower because there
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Method
Memory

Size Acc ↑ BWT ↑ FWT ↑

fine-tune - 19.1 -58.7 0.0

Random
0.2k 22.5 -52.5 26.6
0.5k 24.6 -49.7 27.3
1k 26.2 -47.6 29.7

Herding [182]
0.2k 47.5 -30.8 49.3
0.5k 49.3 -28.7 50.6
1k 50.8 -27.9 52.2

GSS [8]
0.2k 48.8 -30.3 49.8
0.5k 49.6 -29.3 50.8
1k 50.3 -28.2 51.9

Uncertainty [235]
0.2k 50.9 -28.9 51.6
0.5k 51.8 -27.6 53.1
1k 52.9 -27.1 53.9

MIO (Ours)
0.2k 52.1 -28.5 53.4
0.5k 53.7 -27.4 55.9
1k 55.3 -26.5 57.3

Table 2.10: Results for continual learning on Environmental Sound
Classification-50 dataset with different memory selection methods and mem-
ory sizes.

are 50 classes in total and less number of samples per class. We also plot
the change of the accuracies over the sequential tasks in Figure 2.13. From
the figure, we can observe that our method has the least forgetting effect
with a smaller decrease in accuracy. In contrast, fine-tuning has the largest
drop with accuracy close to 1

t
, where t is the number of tasks that the model

has experienced. It is noteworthy that from task 2 to task 3, some continual
learning methods have an increased accuracy instead of a decreasing one.
We speculate that this phenomenon is due to the shared properties of the
acoustic scene classes that these tasks consist of.
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Figure 2.13: Average Acc (%) over tasks in sequential order for different
methods. The accuracies are calculated on the test sets of the seen tasks so
far.

2.7.4 Final Remarks

In this work, we presented a replay-based continual learning approach in
the acoustic scene classification task with mutual information estimation.
We propose to optimize different levels of the model to learn task-agnostic
and task-specific knowledge from the perspective of mutual information, and
select samples from the memory buffer that are both representative and in-
formative. We demonstrate that our proposed method outperforms other
continual learning algorithms by both a lower forgetting effect and higher
generalizability.

2.8 Summary of the Contributions

In this chapter, we tackle the problem of SLU under a class-incremental
learning setting. We start by defining a CIL setting for the problem of intent
classification, and we propose a method that exploits both rehearsal and
knowledge distillation to mitigate catastrophic forgetting. Then, we extend
our investigation by also encompassing the task of slot-filling. To do so,
we first define a CIL setting for the SLURP dataset, the largest and most
diverse dataset in terms of lexical complexity for SLU. Since we treat the task
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of slot-filling as a seq2seq problem, we introduce three different knowledge
distillation methods that combat forgetting at both the encoder and decoder
levels. Furthermore, we propose COCONUT, a new method that makes use
of knowledge distillation, contrastive learning, and rehearsal to endow seq-to-
seq models with lifelong learning capabilities. Finally, we target the problem
of continual learning in acoustic scene classification and we propose a method
that improves both the training process and the memory selection procedure
using the concept of mutual information.
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Chapter 3

Parameter-Efficient Transfer
Learning of Audio and Speech
Foundation Models

3.1 PETL Taxonomy

Parameter-Efficient Transfer Learning (PETL), or Parameter-Efficient Fine-
tuning, refers to the process of adapting a pre-trained model to a specific
task or domain while minimizing the number of additional parameters and
computational resources required [88]. This approach is particularly advan-
tageous when working with large-scale language models, as fine-tuning them
from scratch (i.e., full fine-tuning) can be computationally prohibitive and
incur catastrophic forgetting. By adjusting a limited subset of parameters,
this technique enables efficient customization of the model to new tasks and
domains.

PEFT strategies can be categorized into four main groups [85]:

• Additive PETL, which inserts a small amount of trainable parameters
to the pre-trained model;

• Selective PETL, which updates a subset of the pre-trained model
parameters;
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• Reparameterized PETL, which builds and updates a low-rank pa-
rameterization of the model’s parameters;

• Hybrid PETL, which tries to combine the advantages of multiple
PETL approaches.

3.1.1 Additive PETL Strategies

Additive PETL approaches keep the pre-trained backbone of the model in-
tact, introducing only a minimal number of trainable parameters strategically
placed within the architecture. During fine-tuning for a specific downstream
task, only the weights of these additional parameters are updated, signifi-
cantly reducing the storage, memory, and computational resource require-
ments. We discuss popular additive PEFT methods below. Adapter-tuning
methods insert small modules within the model’s layers. The adapter layer
generally uses a down-projection to project the input to a lower-dimensional
space specified by bottleneck dimension r, followed by a nonlinear activation
function, and an up-projection. The concept of adapters in the natural lan-
guage processing field was first introduced in [97], where the adapter module
is placed sequentially after both the self-attention and feed-forward layers
(referred to as Houlsby adapter). [174], instead, propose to add the adapter
layer only after the feed-forward layer to improve the computational effi-
ciency (Pfeiffer adapter). Multiple works have proposed to insert parallel
adapters to enhance the model’s parallelism [65, 88, 123, 265]. To improve
performance and generalization, various multi-task learning strategies have
been proposed for adapters, including AdapterFusion [174], AdaMix [221],
PHA [259], AdapterSoup [49], MerA [89], and Hyperformer [155]. These
methods typically fuse pre-trained adapters [89, 174] or use a shared hy-
pernetwork ( [155]) to store multi-task information, reducing computational
costs and the number of trainable parameters.

Prompt-based techniques involve adding learnable soft prompts to the in-
put of the pre-trained model to enhance its performance on specific tasks.
This approach avoids modifying the model’s core architecture, making it ef-
ficient and flexible. Various methods, such as Prefix-tuning [128], p-tuning
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[144], and Adaptive Prefix Tuning [256], have been proposed to optimize the
learning and application of soft prompts. These methods involve adding
learnable vectors to the input sequence or to the attention mechanism of the
model. Recent advancements, including Instance-Dependent Prompt Gener-
ation (IDPG) [233], Late Prompt Tuning (LPT) [143], and Selective Prompt
Tuning (SPT) [264], focus on generating instance-specific prompts to fur-
ther improve performance. These methods utilize techniques like prompt
generators and adaptive gating mechanisms to tailor the prompts to the spe-
cific input. To stabilize training and accelerate convergence, methods like
SPoT [215], Transferable Prompt Tuning (TPT) [200], InfoPrompt [231],
and PTP (Prompt Tuning with Perturbation-based regularizer) [42] have
been developed. These techniques leverage techniques like prompt transfer,
mutual information maximization, and perturbation-based regularization to
improve the training process.

Finally, it is worth mentioning techniques like IA3 [139] and SSF [134]
that introduce additional parameters during fine-tuning to enhance perfor-
mance without increasing inference costs. These methods involve rescaling
or linearly transforming the activations of the pre-trained model, which can
be merged into the model weights during inference.

3.1.2 Selective PETL Strategies

Selective PETL strategies involve selectively fine-tuning a subset of the model’s
parameters rather than adding new parameters. Several methods have been
proposed to identify the most important parameters for fine-tuning. These
include diff pruning [81], which uses a learnable binary mask to select param-
eters, PaFi [136], which selects parameters based on their magnitude, and
FishMask [203] and Fish-Dip [53], which use Fisher information to identify
important parameters. Additionally, LTSFT [9] leverages the Lottery Ticket
Hypothesis to identify important parameters.

To improve hardware efficiency, structured parameter masking has been
explored. This approach involves organizing parameter masking in regular
patterns, as opposed to random unstructured masking. FAR [216] employs
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structured pruning strategies to group and eliminate parameters. Bitfit [250]
and Xattn Tuning [72] focus on fine-tuning specific modules, such as bias pa-
rameters or cross-attention layers. SPT (sensitivity-aware visual parameter-
efficient fine-tuning) [87] identifies sensitive parameters and applies targeted
PEFT techniques to optimize the fine-tuning process.

3.1.3 Reparameterized PETL Strategies

Reparametirized strategies build a low-dimensional reparameterization of the
original model parameters during training while transforming the weights
back to enhance inference efficiency. Low-Rank Adaptation (LoRA) [101] is a
popular reparameterization technique that approximates the original weight
matrices of the model with two low-rank matrices. These low-rank matrices
can be fine-tuned to adapt the model to specific tasks without modifying the
original pre-trained weights. Despite LoRA being simple, efficient, and com-
petitive, several works have built upon it to enhance the performance. For
example, DyLoRA dispenses with the challenging requirement of selecting a
specific rank value beforehand, and it dynamically adjusts the rank of the
low-rank matrices during training to optimize performance. AdaLoRA [253]
employs singular value decomposition to adaptively prune the low-rank ma-
trices. SoRA [58] simplifies the LoRA architecture by removing the orthogo-
nality constraint and using a gating mechanism. LoRA+ [86] proposes to set
different learning rates for the LoRA matrices to enhance performance and
fine-tuning speed at no extra computational cost.

Other than LoRA, it is worth describing other reparameterization meth-
ods. For example, Compacter [111], KronA [65] and KAdaptation [90] intro-
duce lightweight adapter modules by parameterizing the low-rank matrices
using the Kronecker product. VeRA [119] employs a single pair of frozen
low-rank matrices shared across all layers, with trainable scaling vectors.
DoRA [142] decomposes model weights into magnitude and direction com-
ponents, fine-tuning only the directional component using LoRA.
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3.1.4 Hybrid PETL Strategies

PETL strategies’ effectiveness can vary significantly across different tasks and
model architectures. This has led to a growing interest in exploring combina-
tions of PETL methods and optimizing their configurations. UniPELT [157]:
integrates LoRA, prefix-tuning, and adapters into each pre-trained model’s
block, using a gating mechanism to control the activation of each sub-module.
S4 [41] explores the design space of various PETL methods (Adapter, Prefix,
BitFit, LoRA) and identifies optimal configurations for different layer groups.

To further optimize PETL configurations, researchers have turned to neu-
ral architecture search (NAS): NOAH [254] employs NAS to discover the
most effective PETL configurations for different tasks, considering Adapter,
LoRA, and Visual Prompt Tuning. AUTOPEFT [263] uses a high-dimensional
multi-dimensional Bayesian optimization approach to search for optimal PETL
configurations, including serial adapters, parallel adapters, and prefix tuning.

3.2 Parameter-efficient Transfer Learning of Au-

dio Spectrogram Transformers [29]

3.2.1 Overview

Leveraging large pre-trained models for downstream tasks has become a cor-
nerstone of several machine learning domains like natural language process-
ing and audio/speech processing. The typical paradigm involves adapting
the whole model to each downstream task [149, 222] (i.e., full fine-tuning).
Despite achieving remarkable results, this approach leads to a specialized
model for each task, which is unfeasible when fine-tuning a model on numer-
ous downstream tasks.

To alleviate this issue, the research community is increasingly focusing
on parameter-efficient transfer-learning (PETL) methods, whereby only a
small amount of extra parameters is learned for each task while keeping
the pre-trained model frozen [88, 133, 236]. In doing so, the risk of catas-
trophic forgetting the pre-trained model’s knowledge is also highly reduced,
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a common problem in continual learning scenarios [27, 32]. For example,
prompt-tuning methods insert trainable continuous vectors in the input or
hidden state of the model, known as prompts [104, 126]. Alternatively, low-
rank modules called adapters, which follow a bottleneck architecture with a
very small intermediate dimension, are introduced into each layer. Another
popular method, LoRA (Low-Rank Adaptation), leverages low-rank matrix
decomposition of pre-trained weight matrices [101]. Several variants of LoRA
have been recently proposed to enhance the original implementation leading
to better performance and stability [142,253].

Recently, PETL methods have garnered much attention in the audio and
speech fields. For example, [47,130,138] provide extensive experiments on the
use of PETL approaches and their combination for self-supervised learning
speech models. Also for automatic speech recognition adapters have proven
to be an effective solution [112, 207]. For audio classification, the Audio
Spectrogram Transformer (AST) [74] obtains superb results, standing out
as the state-of-the-art model for several downstream tasks. The problem
of how to efficiently transfer the knowledge of the AST is of crucial impor-
tance, especially given the typical computational and storage constraints of
audio devices. Surprisingly, this topic has received minimal attention [190].
Therefore, driven by 1) the absence of previous works, 2) the excellent results
obtained by PETL methods in different domains for transformer models, and
3) the need to efficiently adapt the AST model to several downstream tasks,
we ask the following question:

(Q) Can we exploit state-of-the-art PETL methods for the efficient
fine-tuning of AST to audio/speech downstream tasks?

We methodically investigate this research question (Q), and to do so
we provide a framework whereby we can study the performance attained
by several PETL methods on five audio/speech benchmarks. Furthermore,
from our experiments, we notice that the Bottleneck adapter struggles to
achieve on-par performance with respect to the full fine-tuning approach for
speech tasks. We conjecture that this is attributable to the overly simplis-
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tic design of the Bottleneck adapter, where only linear layers are adopted,
which hinders a complete learning of the task at hand. As a consequence,
we propose a new adapter design that hinges upon the convolution module
of the Conformer model. Our proposed Conformer adapter highly benefits
from the introduction of the depthwise convolution layer, which allows not
only to capture local spatial correlations but also trim down the number of
parameters, thus bridging the gap with the full fine-tuning method.

We carry out extensive experiments leading to multiple findings:

• Among the standard PETL methods, LoRA and Houlsby Bottleneck
adapter achieve the best performance overall, with LoRA using fewer
parameters;

• Our proposed Conformer adapter provides considerable improve-
ments over the Bottleneck adapter, surpassing or attaining performance
parity with respect to the full fine-tuning approach while using only
0.29/0.59% parameters compared to it for the Pfeiffer/Houlsby config-
uration;

• We study the PETL methods under few-shot settings and their scal-
ability with respect to the number of trainable parameters, validating
the efficacy of our proposed adapter;

• We show empirically that the kernel size of the depthwise convolution
is a key parameter to attain the best performance;

• We show that the Conformer adapter can be also harnessed for the
efficient fine-tuning of another pre-trained model like Wav2Vec 2.0.

3.2.2 Methodology

AST Model Recap. The Audio Spectrogram Transformer (AST) is an
attention-based model that achieves state-of-the-art results on various audio
and speech tasks [74, 76]. The AST model receives as input audio spectro-
grams that are patchified and then a linear projection is applied to each
patch. This results in a sequence of N tokens of size d = 768, which we

71



3.2. Parameter-efficient Transfer Learning of Audio Spectrogram
Transformers [29]

refer to as Xin ∈ RN×d. AST comprises 12 attention layers, each of which
is composed of two sub-layers: a multi-head self-attention (MHSA) sub-layer
and a fully-connected feed-forward (FF) sub-layer. The output of each trans-
former layer, Xout ∈ RN×d (we omit for simplicity the index of the layer), is
computed as follows:

Xout = X̂+ FF(LN(X̂)), X̂ = Xin + MHSA(LN(Xin)). (3.1)

Both blocks, MHSA and FFN, include residual connections and layer nor-
malizations (LN) [12], with the LN applied within the residual branch (i.e.,
Pre-LN).

Overview of Parameter-efficient Transfer Learning Methods. We
now introduce the PETL techniques we used in our experiments: LoRA,
prompt/prefix-tuning, and adapter-tuning.

LoRA [101] introduces trainable low-rank matrices into transformer lay-
ers to approximate the weight updates. For a pre-trained weight matrix
W ∈ Rd×dk , LoRA represents its update with a low-rank decomposition
W+∆W = W+AB, where A ∈ Rd×r, B ∈ Rr×d are learnable and r << d.
LoRA typically applies this update to the query and value projection matri-
ces, Wq and Wv, in the MHSA sub-layer. LoRA computes the query and
value matrices like this:

Q/V = XinWq/v + s ·XinAq/vBq/v, (3.2)

where s is a tunable scalar hyperparameter.

Prefix-tuning/Prompt-tuning [126, 128]. Prefix-tuning [128] inserts
learnable continuous embeddings (i.e., prompts) to the keys and values of
the MHSA block at every layer. Prompt-tuning [104,126], instead, prepends
the prompts in the input space after the projection layer. Following [104], we
consider the “shallow ” prompt-tuning version (SPT) where all the prompts
are prepended to the first transformer layer, and the “deep” version (DPT)
by prepending the prompts uniformly to each transformer layer.

Bottleneck Adapter [97,174]. Adapters are light subnetworks that are
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inserted into every transformer layer. To keep the number of parameters
limited, adapters exploit a bottleneck architecture. The input sequence of
hidden dimension d is first down-projected (parametrized by Wdown) ∈ Rd×r

into a low-dimensional space with size r (the bottleneck dimension), followed
by a non-linear activation function f(·) (e.g., ReLU), and then up-projected
back to the original dimension d (Wup ∈ Rr×d). We refer to this design as
Bottleneck adapter and is the established choice in the NLP domain [88,97].
Adapter-tuning is a flexible approach in that we can identify multiple ways in
which an adapter can be included in a transformer layer, resulting in different
configurations. For example, the adapter can be inserted only after the FF
block, (Pfeiffer [174]), or after both the MHSA and FF blocks (Houlsby
[97]). Furthermore, the adapter can be included sequentially, either after the
FF block [97] (sequential Pfeiffer) or after both FF and MHSA blocks [155]
(sequential Houlsby), or parallel to only the FFN block [44, 88], or parallel
to both FFN and MHSA blocks [107]. Mathematically, if we consider, as an
example, the Pfeiffer configuration in which the Bottleneck adapter is placed
sequentially after the FF block and we let XFF = FF(LN(X̂)), following the
notation in Eq. 3.1, the output is:

Xout = X̂+XFF + f(X̂Wdown)Wup. (3.3)

Conformer Adapter (Ours). As we will show in Section 3.2.4, the
Bottleneck adapter attains competitive results for audio classification tasks,
whereas for speech tasks the gap with the full fine-tuning approach is sizeable.
We speculate that this happens because the linear design of the Bottleneck
adapter is not sufficient to disentangle the task at hand. For this reason,
we propose to leverage the key block of the Conformer [80], a bleeding-edge
model for several speech processing tasks: the convolution module. This
module highly relies on the depthwise convolution, which is appealing for
our PETL setting for two main reasons: 1) it is used for capturing spatial
correlations, a crucial aspect for speech downstream tasks, which the Bottle-
neck adapter fails to accomplish, and 2) compared to a standard convolution,
it requires fewer parameters, thus making it suitable for parameter-efficient
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Figure 3.1: Left: illustration of the AST model and the integration of PETL
methods into it. We use blocks with dashed outlines to characterize the added
modules by those methods. Right: the inner structure of LoRA, Bottleneck
adapter and our proposed Conformer adapter.

adapters. Therefore, we propose a new adapter that uses the convolution
module as the building block and we call it Conformer adapter (see Fig. 3.1,
right). Specifically, the first pointwise convolution down-projects the input
sequence to a dimension of 2r. Then, the Gated Linear Unit (GLU) halves
the hidden dimension to the bottleneck one, r. At this point, the intermediate
sequence undergoes the depthwise convolution layer with kernel size equal to
k (refer to Section 3.2.5 for the analysis on this hyper-parameter), as well as
the Batch Normalization and Swish activation. Finally, the dimension of the
sequence is up-projected to the original d through a pointwise convolution.
We show the effectiveness of our Conformer adapter in Section 3.2.4.
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3.2.3 Implementation Details

All our experiments can be reproduced following the instructions at the offi-
cial github repository here.

Datasets. We evaluate the PETL methods on four audio/speech down-
stream classification tasks. (1) Audio classification: we use the ESC-50
and UrbanSound8K (US8K) datasets. ESC-50 (ESC) [176] consists of 2, 000
5-second-long environmental audio recordings of 50 classes. US8K [187] in-
cludes 8, 732 labeled sound excerpts of urban sounds from 10 classes. (2)
Keyword spotting: Speech Commands V2 (GSC) [226] has 105, 829 1-
sec recordings of 35 speech commands. (3) Intent classification: Fluent
Speech Commands (FSC) [147] includes 30, 043 English utterances spanning
31 classes. (4) Emotion Recognition: IEMOCAP (IEM) [25] comprises
10, 039 utterances from 10 distinct speakers with 4 emotional classes: neutral,
happy, sad, angry.

Baselines. We include the full fine-tuning method (FFT), which fine-
tunes the full pre-trained AST model; and linear probing, which only fine-
tunes the classification head. We then study various PETL methods: shallow
prompt-tuning (SPT), deep prompt-tuning (DPT), prefix-tuning (Pref-T),
and BitFit [250], which is a common baseline that fine-tunes only the bias
terms of the pre-trained backbone. SPT adds all the 300 prompts to the
input of the first transformer layer, whereas DPT adds 25 prompts to each
transformer layer. Pref-T adds 24 tokens to each layer. We then include
LoRA and Bottleneck and Conformer (ours) adapters. The dimension of the
intermediate space for adapters and LoRA is r = d/RR, where d = 768 is the
hidden dimension of the AST model and RR is the reduction rate. Unless
otherwise stated, r is set to 12, 8, and 6 for Bottleneck adapter, Conformer,
and LoRA, respectively. In this way, the resulting number of parameters
is roughly the same. For LoRA, following [101], the scaling factor is set to
s = α/RR, where α = 16 leads to the best results (i.e., s = 8). We also note
that each adapter module is added in parallel to only the MHSA layer (Pfeif-
fer) or both the MHSA and FF layers (Houslby). For this reason, Houlsby
adapters require twice as many parameters as Pfeiffer. Inserting the adapters
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sequentially leads to slightly worse results, so we do not include these results.
Finally, for the speech tasks we set the kernel size of the depthwise convolu-
tion layer to 31, which is the original value proposed in [80], while for audio
tasks we found that k = 8 gives the best results (we refer the reader to
Section 3.2.5 for a detailed analysis).

Training Details. For all experiments we use the AST model pre-trained
on ImageNet-21K [55] and AudioSet [71] provided by the Huggingface Trans-
formers library. The model has around 85.5 million parameters, 12 layers,
and the hidden size is 768. For the ablation studies, we also use Wav2Vec 2.0,
a well-established pre-trained model for speech tasks [14]. It has around 94M
parameters and the same number of layers and hidden size as AST. For all
datasets, we use AdamW optimizer [146] with cosine annealing scheduler and
weight decay set to 0.1. The initial learning rate is 0.005 for adapters and
LoRA, while for the three prompt-tuning methods is 0.01. Except for US8K
that does not provide a validation set by default, for the others we set the
hyper-parameters using the validation set. For the ESC and US8K datasets,
we run 5-fold and 10-fold cross-validation as suggested in the original papers.

3.2.4 Main Results

Table 3.1 presents the performance comparisons among the various PETL
methods. The following observations can be drawn: ❶ our Conformer adapter
attains the best performance on average, bringing remarkable improvements
over the Bottleneck adapter, with the best configurations leading to up to
{4.9%, 22.4%} extra performance improvement on {GSC, FSC}, the two
datasets that exhibit the biggest mismatch between the downstream tasks
and the data used for pre-training the AST model. Furthermore, our adapter
approaches the FFT baseline for GSC, whereas for FSC it is capable of ex-
ceeding it by more than 3 points. Yet, our Conformer Pfeiffer/Houlsby
adapter only uses 0.29/0.59% parameters compared to the FFT
baseline. ❷ If we focus on the audio classification tasks, we note good im-
provements with respect to US8K (it also manages to outstrip FFT by 0.26
points), while for ESC-50 our adapter performs on par with the Bottleneck
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Table 3.1: Performance evaluations of the PETL methods on 4 datasets for
AST. Best and second-best performances for each dataset are coloured in
green and red, respectively.

Method Par ESC US8K GSC FSC Avg

FFT 85M 87.48 84.31 97.31 93.29 90.07
Linear 9/40K 75.85 77.93 41.78 27.52 55.77
BitFit 102K 86.05 82.17 85.51 63.85 79.40
SPT-300 230K 84.30 79.73 75.28 40.85 70.04
DPT-25 230K 86.52 83.67 89.18 68.60 81.99
Pref-T 24 221K 82.93 81.39 83.46 55.75 75.88
LoRA 221K 86.45 83.83 93.61 76.00 84.97
Bottleneck Adapter
Pfeiffer 249K 88.38 83.44 91.33 73.19 84.09
Houlsby 498K 88.00 82.80 91.75 78.71 85.32
Conformer Adapter
Pfeiffer 271K 88.30 84.57 96.28 95.48 91.16
Houlsby 542K 85.97 83.59 96.16 96.34 90.51

adapter. We point out that the Bottleneck adapter outperforms the FFT
baseline and it can be already considered a strong approach, so using a more
complex design like ours does not improve the performance accuracy. ❸ For
the Bottleneck and Conformer adapters, the Houlsby configuration leads to
better results for speech classification tasks, where having more parameters
is beneficial (Houlsby configuration uses twice as many parameters as Pfeif-
fer), while for audio tasks Pfeiffer achieves better performance accuracy. ❹

Among the other PETL methods, we point out that LoRA achieves good
results on average, beating the Bottleneck Pfeiffer adapter on 3 out of 4

benchmarks.

3.2.5 Ablation Studies

In this section, we study the efficacy of our proposed adapter under differ-
ent settings such as few-shot learning and different pre-trained models (e.g.,
Wav2Vec 2.0). For the Bottleneck/Conformer adapters, we use the Pfeiffer
configuration.
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Table 3.2: Few-shot analysis for the ESC-50 and GSC datasets.

ESC GSC
Examples per class

Method 1 2 4 8 2 8 32 64

DPT-25 32.7 44.3 57.0 71.9 9.4 18.7 43.1 57.1
LoRA 31.8 42.2 58.8 70.7 6.8 15.2 41.8 59.8
Bottleneck 33.0 45.5 60.2 72.8 7.2 16.0 47.9 66.6
Conformer 30.7 41.0 56.2 71.1 5.9 15.5 58.7 77.5
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Figure 3.2: Scaling trend as more trainable parameters for each PETL
method are used for GSC (Left) and FSC (Right) datasets.

Few-shot Analysis. We evaluate our proposed adapters for few-shot
parameter-efficient transfer learning. This scenario is challenging because,
in addition to the constraint on the number of trainable parameters, only
a few samples are labeled per class. We report the accuracy results for
ESC and GSC datasets in Table 3.2. We see that, whereas for ESC the
Bottleneck adapter attains the best results, for GSC the gap between this
and the Conformer adapter is more than 10 points. This again confirms that
our proposed adapter is the best choice for speech tasks.

Scaling Abilities. We now want to verify whether our proposed adapter
also performs better when fewer parameters (e.g., 50K) or more parameters
(up to 1M) are allocated. We restrict our analysis to the Pfeiffer configu-
ration and GSC/FSC datasets. In Fig. 3.2 we observe that the Conformer
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Figure 3.3: Impact of the kernel size for the ESC and GSC datasets on the
few-shot (Left) and full (Right) settings.

adapter, regardless of the number of parameters, outstrips the other PETL
approaches. In turn, LoRA turns out to be the second best method, and
it exhibits strong scaling properties when more parameters are used, bring-
ing better results than Bottleneck adapter and DPT. We point out that for
FSC, the best result obtained with LoRA requires roughly 900K parameters,
whereas the Conformer adapter only requires around 100K to achieve the
same accuracy.

On the Kernel Size of the Conformer Adapter. We study the
impact of the kernel size k of the Conformer adapter on the ESC and GSC
datasets both for the few-shot (4/32 samples) and full (i.e., no few-shot)
settings. We let k vary from 1 to 31, and we point out that setting k = 31

only adds roughly 2.8K parameters with respect to k = 1. In Fig. 3.3 we
observe that for ESC, the results are not much influenced by k, and setting
k = 8 provides the best results. On the contrary, for a more challenging
dataset like GSC we see that increasing k leads to better results for both
the few-shot and full settings, with the former being more sensitive to it.
We speculate that this happens because a larger kernel allows learning more
global features, and this is more beneficial when the number of features is
small (for the Conformer adapter r = 8). On the contrary, since ESC is an
easier dataset, a smaller kernel is sufficient to achieve optimal results.
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Table 3.3: Results of Bottlenck and Conformer adapters for Wav2Vec 2.0 on
GSC, FSC and IEMOCAP (IEM) datasets.

Method Par GSC FSC Par IEM Avg

FFT 90M 98.16 99.58 90M 70.05 89.26
Linear 24K 84.93 30.95 4K 36.82 50.90
Bottle 250K 94.96 96.41 895K 48.32 79.90
Conf 272K 95.24 98.33 927K 55.81 83.13

Additional Results for Wav2Vec 2.0. Finally, we want to verify
whether the proposed Conformer adapter can be efficiently harnessed for
another pre-trained model. In this direction, we consider Wav2Vec 2.0 [14].
We test the Bottleneck and Conformer adapters on FSC and GSC, as well as
IEMOCAP [25], a benchmark for emotion recognition. For IEMOCAP, we
increase the number of parameters to roughly 900K as it is a more challenging
dataset. As we can see from Table 3.3, the performance gap between the
adapter approaches and the FFT is large for IEMOCAP. Nonetheless, we
can observe that the Conformer adapter reaches accuracy results of 55.81,
with an improvement of more than 6 points over the Bottleneck adapter. For
the other two datasets, the Conformer adapter turns out again to surpass the
Bottleneck adapter.

3.2.6 Final Remarks

In this work, we studied the problem of parameter-efficient transfer learn-
ing for the AST model. To do so, we establish a framework that allows us
to examine the performance achieved by the most common PETL methods
across five audio/speech benchmarks. We also propose a new adapter mod-
ule that relies on the Conformer convolution module, making effective use
of the depthwise convolution. We show that our proposed adapter turns out
to be competitive with the full fine-tuning approach and outperforms the
established Bottleneck adapter, as well as LoRA and prompt-tuning meth-
ods. The Conformer adapter also provides strong results under few-shot
settings, when we vary the number of parameters and if applied to another

80



Chapter 3. Parameter-Efficient Transfer Learning of Audio and Speech
Foundation Models

pre-trained model like Wav2Vec 2.0. Finally, we study the role of kernel size,
underscoring its pivotal role in achieving peak performance.

3.3 Efficient Fine-tuning of Audio Spectrogram

Transformers via Soft Mixture of Adapters

[28]

3.3.1 Overview

In the previous section, we have studied multiple PETL techniques for adapt-
ing the AST and Wav2Vec 2.0 pre-trained models to multiple downstream
tasks. From Table 3.1 we saw that the bottleneck adapter struggles to achieve
performance parity with respect to the full fine-tuning approach for the
speech downstream tasks. For this reason, in this section we propose the
use of the mixture of experts (MoE) paradigm to enhance the performance.

Very recently, Mixture of Experts (MoE) models have shown remarkable
results in natural language processing, pushing large language models to the
limit, facilitating the effective scaling of Transformers and State Space Mod-
els while concurrently reducing computational costs [51, 106, 177, 249]. The
MoE paradigm relies on the idea that sub-modular components, the experts,
can specialize in different inputs and scale the model’s capacity. While most
works have focused on the use of MoE during the pre-training stage, only
few works have leveraged MoE for efficient fine-tuning [161,221,249]. In the
latter case, each expert is usually represented by a single adapter, and the
model is referred to as Mixture of Adapters (MoA). However, these works
usually target language-based tasks, whereas pure audio/speech classification
tasks have not been taken into account before. Therefore, in this paper, we
investigate the use of MoA for the Audio Spectrogram Transformer (AST),
a powerful foundation model achieving state-of-the-art results on various au-
dio/speech tasks [74], and we ask the following question:
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(Q) Can we leverage MoAs for the efficient fine-tuning of AST to
audio/speech downstream tasks?

To answer the above research question (Q), we study the MoA’s adoption
for PETL of AST on four popular audio and speech benchmarks. Specifically,
we propose to adapt a recent sparse version of MoE called Soft-MoE [178] to
our PETL setting, whereby each expert only handles a small number of slots
that are the result of a weighted combination of all input tokens. We call it
Soft-MoA, and we compare it with the standard single adapter approach
and with the dense version of MoA that requires each adapter to process all
the input tokens (we refer to it as Dense-MoA). By doing this, we are able
to scale the number of adapters while keeping the computational cost limited
as well as updating only a small fraction of parameters, thus leveraging the
strengths of both the MoE and PETL paradigms. We empirically show that
both Soft and Dense MoA outperform the single adapter approach, both for
the Pfeiffer and Houlsby configuration, leading to accuracy improvement of
up to 2.5%; also, Soft-MoA attains performance parity with Dense-MoA while
drastically trimming down the training cost. Finally, we further demonstrate
the effectiveness of Soft-MoA by carrying out extensive ablation experiments
revealing that ❶) both Soft and Dense-MoA gains over the single adapter
strategy are more evident when fewer parameters are available, ❷) Soft-MoA
is robust to “expert imbalance”, thus ensuring that all experts are involved in
the learning process, and ❸) Soft-MoA attains the best performance accuracy
when few slots (1/2) and several experts are used rather than the opposite
case as multiple slots tend to learn redundant information.

3.3.2 Methodology

In this sub-section, we first give a brief recap of the AST model and the
standard single adapter approach. Then, we present the details of the Dense-
MoA and Soft-MoA approaches.

AST Model Recap. The Audio Spectrogram Transformer (AST) is
an attention-based model that achieves state-of-the-art results on various
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audio and speech tasks [74, 76]. The AST model receives as input audio
spectrograms that are patchified and then a linear projection is applied to
each patch. This results in a sequence of L tokens of size d = 768, which
we refer to as X ∈ RL×d. AST comprises 12 attention layers, each of which
is composed of two sub-layers: a multi-head self-attention (MHSA) and a
fully-connected feed-forward (FFN) module.

3.3.3 Adapters

Adapters are light subnetworks that are inserted into every layer of the AST
model. To keep the parameters limited, adapters exploit a bottleneck archi-
tecture. The input sequence of hidden dimension d is first down-projected
into a low-dimensional space with size r (the bottleneck dimension), and
then up-projected back to the original dimension d. A non-linear activation
function is also applied in-between the two fully-connected layers.

While the bottleneck adapter is the most common design, recent works
have also explored convolution-based adapters mainly for vision tasks (e.g.,
Convpass) [40, 107]. In addition to this, adapters usually follow a Pfeiffer
[174] or Houlsby [97] configuration: the former places the adapter parallel or
sequentially to the MHSA or FFN sub-layer, whereas the latter includes the
adapter on both sub-layers.

Dense MoA. It encompasses a set of N “expert” adapters E1, . . . EN and
a router network R that learns the optimal distribution over the adapters for
a given input sequence. In its simplest form [67, 249], the router is a dense
fully-connected layer with weights W ∈ Rd×N followed by a softmax function
that takes as input the sequence X and merges the output of each adapter
using the gating scores g1, . . . gN to yield the output sequence Y:

gi = R(X)i = softmax(XW), (3.4)

Y =
N∑
i=1

gi · Ei(X). (3.5)

If all the N adapters take part in the computation of the output of a given
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input (scaled by the router’s distribution), then we refer to this as Dense-
MoA (alternatively we can think of this as ensemble MoA). Whereas this
approach would cater to exact computation of gradients and end-to-end-
learning, it would also incur a substantial increase in computational costs
since each input token is computed by every expert rather than a single
expert. To circumvent the above issue, we propose to adapt a recent method
called Soft Mixture of Experts [178] to our PETL setting where each expert
is an adapter, and we call it Soft-MoA. Note that in our setting only the
adapters are actually learned whilst the backbone model is frozen.

Soft-MoA. Rather than feeding all input tokens to each expert, Soft-
MoA passes a different weighted soft combinations of all input tokens to
each expert. Unlike other sparse techniques like Top-k [194] whereby only
the k experts that are assigned the highest router’s probability are activated,
Soft-MoA provides fully-differentiable operations, better training stability,
and immunity to “token dropping” and “expert imbalance” issues [178]. In
practice, each adapter processes p slots, and each slot has a corresponding
d-dimensional vector of parameters. These parameters are denoted by Φ ∈
Rd×(N ·p). The input slots, X̃, are computed as the convex combination of all
the L input tokens:

X̃ = D⊤X, Di,j =
exp((XΦ)i,j∑L

h=1 exp((XΦ)h,j)
. (3.6)

D is called the dispatch weights and corresponds to applying a softmax along
the columns of XΦ. At this point, each adapter processes the corresponding
slots: Ỹi = E⌊i/p⌋(X̃i). Finally, the output tokens Y are the result of a
convex combination of all (N · p) slots:

Y = CỸ, Ci,j =
exp((XΦ)i,j∑N ·p

h=1 exp((XΦ)i,h)
. (3.7)

The matrix C is referred to as the combine weights, and is equivalent to
applying a softmax over the rows of XΦ.

We provide an overview of Soft and Dense MoA in Figure 3.4. Finally,
for our experiments, following [29] that show that inserting the adapter in
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Figure 3.4: (a) For each AST layer, the Soft/Dense MoA blocks are inserted
parallel to MHSA (Pfeiffer) or parallel to both MHSA and FFN sub-layers
(Houlsby). (b) Illustration of Dense-MoA, whereby each expert contribu-
tion, scaled by the router’s distribution (thickness of the arrows), is summed
to produce the final output. (c) In Soft-MoA, each expert only processes a
subset of slots (here 2), and each slot accepts as input a weighted combina-
tion of all input tokens (thickness of the arrows). Note that the trainable
parameters are represented by dashed blocks. Best viewed in color.

parallel achieves better performance than sequentially, we place the MoA
block parallel to the MHSA layer only (i.e., Pfeiffer) or parallel to both the
MHSA and FFN layers (i.e., Houlsby). The number of slots p is an hyper-
parameter, and we elaborate on its optimal value on Section 3.3.6.

3.3.4 Implementation Details

For our experiments, we mainly follow the implementation details of [29]
(i.e., Section 3.2) to provide a fair comparison. All our experiments can be
reproduced following the instructions at the official github repository here.

Datasets. We evaluate the PETL methods on three audio/speech down-
stream classification tasks. (1) Audio classification: we use the ESC-50
and UrbanSound8K (US8K) datasets. ESC-50 [176] consists of 2, 000 5-
second-long environmental audio recordings of 50 classes. US8K [187] in-
cludes 8, 732 labeled sound excerpts of urban sounds from 10 classes. (2)
Keyword spotting: Speech Commands V2 [226] has 105, 829 1-second
recordings of 35 speech commands. (3) Intent classification: Fluent Speech

85

https://github.com/umbertocappellazzo/PETL_AST


3.3. Efficient Fine-tuning of Audio Spectrogram Transformers via Soft
Mixture of Adapters [28]

Commands (FSC) [147] includes 30, 043 English utterances spanning 31 classes.

PETL baselines. We include two traditional fine-tuning strategies: full
fine-tuning (Full-FT), which finetunes the full pre-trained AST model; and
linear probing, which only fine-tunes the classification head. Following [29],
we include some common PETL baselines: BitFit [250], deep prompt-
tuning (DPT) [104], prefix-tuning (Pref-T) [128] and LoRA [101]. For
the analysis of MoA, we take into account both Bottleneck [97] and Convpass
[107] adapters. We report Dense and Soft-MoA (D/S-MoA) with 14 or 7

adapters for the Pfeiffer and Houlsby configuration, respectively, and we
compare them with the standard implementation using a single adapter per
layer (Single).

Training Details. For all experiments we use the AST model pre-trained
on ImageNet-21K [55] and AudioSet [71] provided by the Huggingface Trans-
formers library [229]. The model has around 85.5 million parameters, and
the hidden size is 768. For the LoRA, DPT, etc. baselines, we use the same
training parameters described in Section 3.2. For MoA experiments, we use
AdamW optimizer with cosine annealing scheduler and weight decay set to
0.1. For the ESC-50 and US8K datasets, we run 5-fold and 10-fold cross
validation as suggested in the original papers. Except US8K that does not
provide a validation set by default, for the others we set the hyper-parameters
using the validation set.

3.3.5 Main Results

Table 3.4 presents the performance comparisons between the single adapter
approach and Soft/Dense MoA, as well as some other common PETL meth-
ods. The single adapter approach has bottleneck dimension equal to 24,
whereas Soft/Dense-MoA include 14 adapters, each with bottleneck dimen-
sion 1, and one slot is used for each adapter. From table 3.4 we observe that
both MoAs outperform the single adapter, leading to up to 2.5 % perfor-
mance improvement on average for the Bottleneck case, while for Convpass
we notice that Soft-MoA is slightly worse than Dense-MoA, but still better
than the single adapter. In general, the biggest gain is obtained with the FSC
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Table 3.4: Performance evaluations of Dense and Soft-MoA on 4 benchmarks
for the Pfeiffer configuration. We report the top-1 accuracy for each dataset,
the average over the four datasets (Avg), and the average train step time in
milliseconds (Time).

Method # par ESC-50 US8K GSC FSC Avg Time(ms)

Full FT 85.5M 87.48 84.31 97.31 93.29 90.07 645
Linear 9-40K 75.85 77.93 41.78 27.52 55.77 226
BitFit 102K 86.05 82.17 85.51 63.85 79.40 513
DPT 230K 86.52 83.67 89.18 68.60 81.99 561
Pref-T 221K 82.93 81.39 83.46 55.75 75.88 529
LoRA 221K 86.45 83.83 93.61 76.00 84.97 525
Bottleneck Adapter
Single 470K 88.65 83.36 93.53 78.19 85.93 513
D-MoA 14 535K 89.55 84.30 93.89 82.43 87.54 1689
S-MoA 14 535K 89.08 84.88 93.91 82.48 87.59 626
Convpass Adapter
Single 491K 87.93 83.38 93.47 77.62 85.60 515
D-MoA 14 535K 89.30 84.32 93.70 83.52 87.71 1727
S-MoA 14 535K 88.43 84.29 93.36 80.36 86.61 638

dataset (up to 5.5 and 7.6 %). Indeed, FSC is the more challenging dataset
as it includes longer speech audio data, thus we argue that multiple adapters
can specialize in learning different information, and consequently leading to
better performance. We also notice that the GSC dataset does not benefit
much from the use of MoA architecture. We surmise that a single adapter
already achieves very competitive performance and so the use of multiple
smaller adapters is not helpful. Another pivotal aspect is the extra com-
putational cost brought by MoAs, estimated as the average train step time
in milliseconds. Whereas Dense-MoA incurs a considerable increase in time
(more than 3x with respect to the single adapter), S-MoA, instead, requires
only a limited extra time, while guaranteeing on-par performance.

Finally, we test Soft-MoA’s efficacy for the Houlsby configuration, where
the MoA block is also inserted parallel to the FFN sub-layer. Table 3.5
confirms the superiority of both MoAs over the single adapter.
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Table 3.5: Results of D/S-MoA for the Houlsby configuration. The number
of parameters coincides with Pfeiffer as we still use 14 adapters split equally
between MHSA and FFN layers.

Method ESC-50 US8K GSC FSC Avg

Bottleneck Adapter
Single 88.00 82.80 91.75 78.71 85.32
D-MoA 7 87.33 83.78 94.11 82.64 86.97
S-MoA 7 87.13 83.77 93.67 81.41 86.50
Convpass Adapter
Single 87.15 82.75 92.55 77.79 85.06
D-MoA 7 87.31 83.77 93.20 82.26 86.63
S-MoA 7 88.13 83.87 92.69 81.69 86.60

3.3.6 Ablation Studies

We now conduct some ablation studies to evaluate the effectiveness of Soft-
MoA under different settings. We focus on the Pfeiffer Bottleneck configu-
ration, and on the FSC dataset.

Increasing the Parameters Budget. We examine the methods’ be-
haviour as we increase the number of trainable parameters. For the single
adapter, we increase the parameters by making the bottleneck dimension
r larger, while for MoAs we keep it to 1 and we increase the number of
adapters. From Figure 3.5 (Left) we observe that Soft-MoA outperforms
the single adapter, although when more and more parameters are available
the two methods tend to achieve similar results, thus showing that using a
single adapter is a good alternative when scaling the number of parameters
is sustainable.

Few-big vs Many-small Adapters. We now investigate how the MoA
methods scale with respect to the number of adapters N . Regardless of N ,
we fix the number of learnable parameters to around 900K to have a fair
comparison. In this way, we want to figure out if having more adapters with
a smaller bottleneck dimension is better than having a few but “bigger” (in
terms of parameters) adapters. The Figure 3.5 (Middle) shows that Dense-
MoA, due to its intrinsic dense structure, reaches the peak performance when
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Figure 3.5: (Left). The accuracy trend as more parameters are used. (Mid-
dle). The effect of the number of adapters given a fixed parameters budget.
(Right). Adapters contribution to the output tokens for various layers. Re-
sults reported for FSC.

N = 7, and then adding more adapters does not lead to additional improve-
ment. On the contrary, Soft-MoA depends heavily on N , and only when this
number is large enough does it attain good performance. This trend is in
line with that of the original Soft MoE paper [178].

Adapters Contribution to the Output Tokens and Classes. By
design, the computation of the final output tokens depends on a linear com-
bination of all the adapters’ slots. We want to verify whether all adapters
contribute to the output sequence. We fix one slot per adapter and consider 7
adapters, and we approximate the contribution of each adapter by averaging
their coefficients in the linear combinations for all output tokens. We average
over all the batches of the test set and report the adapter contribution for
different layers in Figure 3.5 (Right). We see that some adapters have a big-
ger impact than others, but all of them contribute to the final output tokens.
Therefore, Soft-MoA does not suffer from the expert imbalance issue, namely
few adapters monopolize the output contribution while the others are over-
shadowed, an issue that affects other routing strategies like Top-k [178,194].
In addition to this, we compute the contribution of each adapter to each class.
To do this, for each sample of each class, we compute the contribution of each
adapter and then we average over the total number of samples per class (for
this reason the sum of each row of the heatmap does not sum to 1). We
observe from Figure 3.6 that some adapters specialize more for some classes
than others (adapter 0 has a high contribution for classes 26-29, adapter 1

for classes 7, 20-22). We also see that the adapter with ID 5 has a strong
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N/p Acc

2/14 78.52
4/6 80.26
6/4 81.65
8/3 82.36

12/2 83.24
24/1 82.87

Table 3.6: Optimal trade-
off between the number of
adapters N and slots p.
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Figure 3.6: Distribution of expert activa-
tion frequencies per class.

contribution for several classes.

Optimal Trade-off between Slots and Adapters. The number of
slots p is an important hyper-parameter of Soft-MoA, thus we examine its
optimal value. We notice that if we set the number of slots equal to the num-
ber of tokens L, Soft-MoA boils down to Dense-MoA, so it is crucial to keep
p small. For our experiments, depending on the dataset, L is between 100

and 500, and setting p up to 14 is a reasonable choice. We report the results
for FSC in Table 3.6 and we see that, with the same number of trainable
parameters, having more adapters with few slots brings better results than
having few adapters but many slots. We speculate that this happens because
multiple slots corresponding to the same adapter might have a tendency to
learn similar concepts and become redundant, whereas using more adapters
ends up learning more diverse information.

3.3.7 Final Remarks

In this work, we proposed Soft Mixture of Adapters to efficiently fine-tune
the AST model on various audio/speech downstream tasks. Soft-MoA relies
on multiple adapters that take as input a soft convex combination of all the
input tokens, thus reducing the computational cost of the dense counterpart.
Extensive experiments on 4 benchmarks show that Soft-MoA performs on
par with Dense-MoA, and it outperforms the single adapter strategy, con-
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firming itself as a strong method also for parameter-efficient transfer learning
settings. To strengthen our analysis, we carry out ablation studies revealing
that Soft and Dense MoA provide bigger gains over the single adapter when
the parameters budget is limited. We also show that Soft-MoA scales better
with the number of adapters and that it is sufficient to use only 1 or 2 slots
to achieve the optimal performance.

3.4 Summary of the Contributions

In this chapter, we provide a framework for investigating various parameter-
efficient transfer learning methods aimed at efficiently fine-tuning foundation
models for audio and speech. Besides, we propose two key advancements:

1. A novel adapter architecture inspired by the Conformer model, de-
signed to enhance performance.

2. The application of a mixture-of-experts paradigm to enable specializa-
tion of different adapter modules based on the input data.
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Chapter 4

Llama-AVSR: a New Multimodal
Large Language Model with
Strong Audio-Visual Speech
Recognition Abilities

In Chapter 3, we have studied how to efficiently transfer the knowledge of
pre-trained audio and speech foundation models to perform multiple down-
stream classification tasks. In this chapter, instead, we go one step further
and we also investigate how to leverage the reasoning and understanding ca-
pabilities of pre-trained large language models (LLMs) for generative tasks
like (automatic) audio speech recognition ASR, visual speech recognition
VSR, and audio-visual speech recognition AVSR. This is motivated by the
ever-growing abilities of LLMs to process multimodal inputs and the absence
of an exhaustive research study of how LLMs can be used to carry out the
ASR, VSR, and AVSR tasks.

Recent advancements in LLMs [1, 10, 64, 77, 105, 209, 260] have yielded
impressive emergent abilities, including instruction tuning [168,172,227], In-
Context Learning [23,59], and Chain-of-Thought reasoning [220,228]. While
LLMs excel at understanding and generating text, their reliance on textual
data limits their ability to perceive and reason about other modalities (e.g.,
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vision and audio). In contrast, large vision [116, 251] and audio [14, 43, 98]
models are adept at processing visual and audio information but often strug-
gle with complex reasoning tasks that require understanding and manipulat-
ing abstract concepts.

Recognizing the complementary strengths of LLMs and large vision/audio
models, researchers have begun to integrate these models to create a new class
of models known as Multimodal Large Language Models (MLLMs) [15,56,73,
140,141,150,160,208,246]. Formally, MLLMs are LLM-based models that can
process, reason with, and generate a wide range of multimodal information,
including text, images, videos, and audio. A typical MLLM is composed of
three modules: a pre-trained modality-specific encoder, a pre-trained LLM,
and a modality-specific projector. This architecture draws inspiration from
human cognition, where modality encoders (e.g., image or audio encoders)
function like human eyes or ears, receiving and pre-processing sensory input.
The LLM, akin to the human brain, processes and reasons with this pre-
processed information. The modality projector acts as a bridge, aligning
different modalities to enable seamless communication between the encoder
and the LLM.

In line with these extraordinary results, in the audio and speech domain,
it is been shown that an LLM can be equipped with speech recognition
abilities by just concatenating the audio tokens, computed with an audio
encoder, and the text tokens to achieve state-of-the-art results [39, 66, 248].
On the contrary, tasks like VSR and AVSR, which also exploit noise-invariant
lip movement information, have received little or no attention. To bridge this
gap, we propose Llama-AVSR, a new MLLM with strong audio-visual speech
recognition capabilities (see Section 4.1). It leverages pre-trained audio and
video encoders to produce modality-specific tokens which, together with the
text tokens, are processed by a pre-trained LLM (e.g., Llama3.1-8B) to yield
the resulting response in an auto-regressive fashion. Llama-AVSR requires
a small number of trainable parameters as only modality-specific projectors
and LoRA modules are trained whereas the multimodal encoders and LLM
are kept frozen. We evaluate our proposed approach on LRS3, the largest
public AVSR benchmark, and we achieve new state-of-the-art results for the
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tasks of ASR and AVSR with a WER of 0.81 our results, we investigate
the key factors that underpin the effectiveness of Llama-AVSR: the choice of
the pre-trained encoders and LLM, the efficient integration of LoRA modules,
and the optimal performance-efficiency trade-off obtained via modality-aware
compression rates.

4.1 Large Language Models are Strong Audio-

Visual Speech Recognition Learners [31]

By integrating both auditory and visual data, audio-visual speech recognition
(AVSR) aims to enhance the capabilities of speech recognition systems [3,
83,151,196]. Notably, the additional use of visual lip movement information
is highly beneficial in environments characterized by background noise or
ambient speech, enhancing noise robustness [75, 197]. Multiple works have
shown that having access to a wide amount of labeled audio-visual data is the
key to obtaining strong results [36, 193]. However, such a reliance on large-
scale transcribed datasets of up to 100K samples is prohibitively expensive
and time-consuming. Therefore, recent methods have focused on different
paradigms. A vast class of works relies on the Self-Supervised Learning (SSL)
paradigm [79] by pre-training on large-scale datasets of unlabeled videos and
then fine-tuning on a few hundred hours of labeled videos [83,84,99,135,196].
For example, AV-HuBERT [196] learns to predict cluster assignments from
masked audio-visual data. U-HuBERT [99] builds upon AV-HuBERT and
exploits unlabeled unimodal and multimodal speech data during the pre-
training phase. Other methods like RAVEn [83] and its extension, BRAVEn
[84], use a student-teacher framework where the teacher model’s weights are
updated via an exponential moving average of the student’s using lightweight
Transformer predictors. Another line of research [151, 153, 245] proposes
to use publicly-available pre-trained ASR models to automatically annotate
large-scale audio-visual datasets.

Large language models (LLMs) have shown exceptional abilities in han-
dling natural language tasks [64, 105]. Their impressive generalization and
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instruction-following capabilities have spurred the development of multi-
modal LLMs (MLLMs) [160, 208], thus making it possible to process other
modalities rather than just text. MLLMs have obtained remarkable per-
formance in several tasks like vision-language [6, 127, 140, 141], video under-
standing [48,129], and audio understanding [56,73,118] to name a few. Some
works also propose unified MLLMs that handle multiple modalities at the
same time [131,150,247].

Recent research has also highlighted the effectiveness of LLMs for the task
of automatic speech recognition (ASR) [39,66,102,154,248] and visual speech
recognition [244]. An LLM can be endowed with speech recognition abilities
by conditioning on the audio embeddings and by training lightweight pro-
jector layers [154] or LoRA modules [66]. Given the excellent performance
achieved by LLM-empowered ASR models and the ability of LLMs to pro-
cess multiple modalities simultaneously [131,247], we aim to explore whether
LLMs can be adapted to perform the task of AVSR. In this way, the LLM
would rely on multimodal tokens that convey the same information but from
complementary perspectives. For example, the LLM can highly benefit from
additional video tokens in the presence of noisy acoustic environments. Fur-
thermore, there is a notable absence of comprehensive research that system-
atically explores the integration of ASR, VSR, and AVSR tasks using LLMs.
Driven by these considerations, we pose the following research question:

(Q) How can we leverage powerful LLMs to carry out the tasks of
audio, visual, and audio-visual speech recognition?

To tackle (Q), we propose a new framework, Llama-AVSR, which har-
nesses pre-trained LLMs (e.g., Llama-based [64, 209]) and audio/video en-
coders for the tasks of ASR, VSR, and AVSR. Our approach involves ex-
tracting modality-specific feature representations from pre-trained encoders.
These features are then downsampled to reduce computational complexity
and projected into the LLM’s embedding space using lightweight projectors,
resulting in audio/video tokens. By concatenating these tokens with the text
tokens, we integrate information from all modalities. These combined tokens
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are fed into the LLM that generates the transcriptions in an auto-regressive
way. Llama-AVSR only trains the projectors and the LLM’s LoRA module
while keeping the pre-trained encoders and LLM frozen. In this way, we
significantly reduce the number of trainable parameters compared to tra-
ditional methods that train the entire pipeline. Moreover, the modularity
of our Llama-AVSR framework facilitates the seamless integration of various
pre-trained encoders and LLMs of different sizes. This flexibility allows us to
easily adapt our model to meet specific requirements of the size-performance
trade-off.

Llama-AVSR achieves new state-of-the-art results on the LRS3 dataset for
the tasks of ASR (0.81%) and AVSR (0.77%) by training only 42 and 57 mil-
lion parameters, respectively. For VSR, our method outperforms prior works
using LLM [244] and attains comparable performance with state-of-the-art
methods [83, 151]. Moreover, we experimentally analyze the key factors
that lead to the effectiveness of Llama-AVSR for the three tasks, observing
that: ❶) the choice of the pre-trained audio and video encoders as well as of
the LLM has a big impact on the final performance, ❷) incorporating LoRA
modules into the LLM and video encoder are highly beneficial to improve the
overall performance whilst requiring limited additional parameters, ❸) the
selection of the compression rate is crucial to finding the optimal trade-off
between performance and efficiency for all three tasks.

4.2 Method

Our method, Llama-AVSR, leverages the capabilities of pre-trained audio and
video encoders as well as LLMs for carrying out the tasks of ASR, VSR, and
AVSR. It comprises three main components: 1) modality-specific pre-trained
encoders (i.e., audio and video), 2) modality-specific projectors, and 3) an
LLM. This architecture is referred to as Multimodal LLM (MLLM) as the
LLM produces text responses in an auto-regressive way given a sequence of
multimodal input tokens (audio/video + text). Our approach is illustrated
in Figure 4.1. Due to its versatility and streamlining pipeline, we adopt
the decoder-only-based approach [137, 141, 160], which combines pre-trained
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LLMs and multimodal inputs through lightweight connectors, rather than the
cross-attention-based approach [6, 64, 208], which incorporates multimodal
tokens through a cross-modal attention mechanism. We delve into the details
of each MLLM’s building block below.

Modality-specific Pre-trained Encoders. We exploit pre-trained au-
dio (e.g., Whisper [181]) and video (e.g., AV-HuBERT [196]) encoders to
extract meaningful audio and video features to be harnessed by the LLM.
These pre-trained encoders are maintained frozen throughout the training
process. For the task of VSR only, we found empirically that adding a LoRA
module to the video encoder brings additional improvements at a small over-
head cost of around 6M parameters.

Modality-specific Projector. The projector, sometimes called con-
nector [129, 131], bridges the pre-trained encoders and the LLM by trans-
lating audio and visual features into understandable tokens that the LLM
can process. The quality of these tokens significantly influences the MLLM’s
performance. Furthermore, the projector plays a crucial role in terms of ef-
ficiency since it determines how many tokens will be processed by the LLM,
which handles most of the computational load. For instance, 6 seconds of
audio-visual features yield 450 frames, thus processing these long sequences
with the LLM presents substantial computational challenges. Given their
simplicity and popularity, we opt to employ linear projectors, which excel at
capturing fine-grained details by preserving local audio and visual patterns
without loss due to their inherent frame-wise transformation [34]. However,
they usually struggle in terms of efficiency and scalability as the number
of features (before the projector) and tokens (after) remains constant. We
tackle this by downsampling the audio and video features to reduce their
sequence length: we first concatenate K (we call it compression rate) con-
secutive features along the hidden dimension (i.e., the sequence length/hid-
den size is reduced/increased by a factor K), and then the projector maps
the audio/video features into audio/video tokens through two linear layers
to match the text tokens hidden size. Finally, audio and video tokens are
concatenated with the textual tokens, ready to be processed by the LLM.

LLM. The goal of the LLM is to generate instruction-following responses
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Large Language Model (LLM)

Audio

LoRA

Encoder
Video

Encoder LoRA

Prompt + Text

Projector Projector

Text

Embed

Tokenizer

Figure 4.1: Illustration of Llama-AVSR. Audio and video features are ex-
tracted via pre-trained encoders and subsequently downsampled and pro-
jected into the LLM space through modality-specific projectors. The re-
sulting audio and video tokens are concatenated with the textual ones and
processed by the LLM. The video encoder is equipped with the LoRA module
only for the VSR task (dashed outline). and means that the block is
trained and kept frozen, respectively.

given a sequence of multimodal inputs. In addition to the text tokens, the
LLM processes: 1) audio tokens for the ASR task, 2) video tokens for the task
of VSR, and 3) both audio and video tokens for the task of AVSR. Therefore,
the LLM digests audio and/or video and text (instruction/prompt + tran-
scription) tokens while generating the text response (i.e., the transcription)
in an auto-regressive fashion. Formally, if we consider the task of AVSR, the
multimodal input comprises audio Xaud, video Xvid, and text Xtext tokens.
The LLM predicts the response Y = {yi}Ni=1 conditioned on the multimodal
input tokens, where N represents the number of tokens. Accordingly, the

99



4.3. Implementation Details

probability of the target response Y is computed by:

p(Y|Xaud,Xvid,Xtext) =
N∏
i=1

p(yi|Xaud,Xvid,Xtext, y<i), (4.1)

where y<i is the generated output sequence up to token i − 1. In all our
experiments the LLM is kept frozen while we add a LoRA module to align
the LLM responses with the multimodal inputs.

4.3 Implementation Details

Datasets. We conduct our experiments on LRS3 [4], the largest publicly
available dataset for audio-visual speech recognition. It includes 433 hours of
transcribed English video clips from TED talks. We also report the results
when training on only the 30-hour “trainval” set of LRS3 (denoted “low-
resource” setting in [83]). Additionally, following [151], we use the pre-trained
Whisper model [181] to generate the transcriptions of the English-speaking
videos from VoxCeleb2 [50], resulting in additional 1, 326 hours. We also
report the results from this setting: LRS3 + VoxCeleb2 (1, 756 hours). In
this way, we test the effectiveness of our proposed method in 3 different
settings based on the amount of labeled hours.

Pre-processing. We follow [151] for the pre-processing of the datasets.
For the video part, we crop the mouth region of interests (ROIs) through a
bounding box of 96 × 96. Each frame is normalised by subtracting the mean
and dividing by the standard deviation of the training set. For audio, we
only apply z-normalisation per utterance.

Training/Inference Details. We augment visual inputs through hor-
izontal flipping, random cropping, and adaptive time masking, whereas for
audio we only apply adaptive time masking. For training, similar to [151],
we sample bubble noise from the NOISEX dataset [214] using a uniform
distribution from the range [-5, 0, 5, 10, 15, 20, ∞]dB and add it to the
clean speech signal. For our experiments, we use Whisper-medium [181] and
AV-HuBERT Large [196] as pre-trained audio and video encoders. These en-
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coders are kept frozen, and only for the VSR task do we add a LoRA module
to the video encoder (we use a rank = 64, resulting in roughly 6M additional
parameters). For AV-HuBERT, we use the checkpoint pre-trained on LRS3
+ VoxCeleb2. The projectors consist of two linear layers with ReLU activa-
tion in between (∼ 15M parameters). For the tasks of ASR and VSR, we
apply a compression rate K of 3 for the settings with 433 and 1756 hours,
and 2 for the low-resource setting with 30 hours. For the task of AVSR, we
set K equal to 4 and 2 for the audio and video tokens, respectively. We refer
the reader to Section 4.5 for a detailed analysis of K. For the main exper-
iments, we use the pre-trained Llama3.1-8B [64] as our LLM, while for the
ablation studies we also experiment with TinyLLama [252], Llama2-7B [209],
and Llama2-13B [209] to compare LLMs of different sizes. The LLM is cou-
pled with a LoRA module (∼ 27M parameters). The prompt for the LLM is
“Transcribe {task_prompt} to text.”, where task_prompt ∈ {“speech”,
“video”, “speech and video”} depending on the task we study. We train
our model for 10 epochs with the AdamW optimizer with cosine annealing
scheduler and weight decay set to 0.1. The learning rate is set to 1e-3 for
ASR and AVSR tasks, and 5e-4 for VSR. For decoding, we use beam search
with a beam width of 15 and temperature of 0.6 and only the most probable
tokens with probabilities that add up to top_p = 0.9 are kept for generation.

4.4 Main Results

We report the results in terms of Word Error Rate (WER) obtained by
Llama-AVSR in Table 4.1. We compare our approach with multiple state-
of-the-art works based on the considered task (ASR, VSR, AVSR) and the
number of labeled hours. We also include the number of trainable parameters
and the encoder(s) employed by each method, which may utilize a pre-trained
model (as in our case, VSP-LLM [244] and Whisper-Flamingo [185]) or be
trained from scratch [36, 151, 196] (i.e., Transformer or Conformer). For the
task of ASR (“audio-only setting”), Llama-AVSR sets a new state-of-the-art
with a WER of 0.81% by training on LRS3 + VoxCeleb2 (1756 hours), and it
also outperforms the other methods when using 433 and 30 hours achieving
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Table 4.1: WER (%) of Llama-AVSR and prior works on the LRS3 dataset.
We report results based on the task (ASR, VSR, AVSR) and on the labeled
hours (30, 433, 1756).

Method Encoder(s) Trainable
Par. (M)

Labeled
Hours WER ↓

Audio-Only Setting
RAVEn [83] Transformer 328 30/433 1.9/1.4
BRAVEn [84] Transformer 328 30/433 1.7/1.1
CM-seq2seq [152] Conformer 250 433 2.3
Fast Conformer [24] Conformer 197 435 1.6
AV-HuBERT [196] Transformer 325 433 1.3
Whisper-finetuned [185] Whisper 1550 433 2.3
auto-avsr [151] Conformer 243 1902/3448 1.0/1.0
Llama-AVSR AV-HuBERT A 40 433 1.4
Llama-AVSR Whisper 42 30 1.5
Llama-AVSR Whisper 42 433 1.1
Llama-AVSR Whisper 42 1756 0.79

Video-Only Setting
RAVEn [83] Transformer 328 30/433 24.8/24.4
BRAVEn [84] Transformer 328 30/433 20.0/20.1
AV-data2vec [135] Transformer 325 30/433 30.8/28.5
auto-avsr [151] Conformer 250 433 36.3
AV-HuBERT [196] Transformer 325 433 26.9
VSP-LLM [244] AV-HuBERT V 17 433 26.7
auto-avsr [151] Conformer 250 1902 23.5
LP Conformer [36] Conformer 570 100K 12.8
Llama-AVSR AV-HuBERT V 48 30 28.4
Llama-AVSR AV-HuBERT V 48 433 25.3
Llama-AVSR AV-HuBERT V 48 1756 24.0

Audio-Visual Setting
CM-seq2seq [152] Conformer 250 433 2.3
Whisper-Flamingo [185] Whisper 631 433 1.5
CMA [114] Transformer 500 433 1.5
auto-avsr [151] Conformer 425 1902/3448 1.0/0.9
Fast Conformer [24] Conformer 197 1687 0.9
ViT3D-CM [193] Transformer / 90K 1.6
LP Conformer [36] Conformer 570 100K 0.9
Llama-AVSR AV-HuBERT AV 59 433 1.3
Llama-AVSR Whisper + AV-HuBERT V 57 433 0.95
Llama-AVSR Whisper + AV-HuBERT V 57 1756 0.77

WER results of 1.5% and 1.1%, respectively. Remarkably, our approach only
requires 42M trainable parameters, which are far fewer compared to all the
other methods. We also report the WER achieved by fine-tuning completely a
Whisper encoder-decoder model on LRS3 as reported in [185]. Not only does
this approach attain a WER much higher than Llama-AVSR (2.3% vs 1.1%),
but it also requires the updates of more than 1.5B parameters. Moreover,
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their model harnesses Whisper-Large while Llama-AVSR uses the Medium-
size version. We also report the case in which AV-HuBERT is used as the
audio encoder in place of Whisper (“AV-HuBERT A”).

For the video-only setting, Llama-AVSR outstrips VSP-LLM, which is the
only prior LLM-based method that exploits a pre-trained video encoder (AV-
HuBERT) and LLM (Llama2-7B) and adds an extra task during training
(visual speech translation). In addition to this, when we train on 433 hours
we see that Llama-AVSR outperforms various methods like auto-avsr and
AV-HuBERT. However, the gap with methods like RAVEN and BRAVEn is
more noticeable. We speculate that more sophisticated projectors such as
those proposed in recent works [34,129] could produce more fine-grained and
expressive tokens and so bridge this gap, yet we leave it for future works. We
also observe that adding more training data results in further improvement,
achieving performance parity with respect to auto-avsr and RAVEn. Finally,
in Table 4.1 we also report the WER obtained by a recent method, LP
Conformer [36], which uses around 100K hours, showcasing that for the task
of VSR scaling the training data leads to superior performance.

Finally, for the task of AVSR, we obtain two new SOTA of 0.95% and
0.77% when using 433 and 1756 hours. This is achieved by using Whisper
as the audio encoder and AV-HuBERT as the video encoder. If, instead, we
use AV-HuBERT to process both audio and video (“AV-HuBERT AV”), the
results are slightly worse, in line with what we observed for the ASR task. We
point out that our model outperforms methods that exploit tens of thousands
of hours [36, 193]. By comparing with the ASR results, we notice that the
additional use of video data is more helpful when we train on LRS3 only
(1.1% → 0.95%), whereas the gain is reduced when more data are available
(0.81% → 0.77%), and this trend in line with previous works [135,151].

4.5 Analysis on the Key Factors of Llama-AVSR

Exploring Different Encoders and LLMs for Llama-AVSR. We con-
duct multiple ablation studies on various components of Llama-AVSR to un-
derstand their impact on the final performance. We focus on the setting
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Figure 4.2: WERs of multiple Llama-AVSR configurations for ASR task.

with 433 hours. For the ASR task, we study four different LLMs from the
Llama family with increasing size: TinyLlama (1.1B parameters), Llama2-
7B, Llama2-13B, and the more recent Llama3.1-8B. These LLMs are depicted
in different colors in Figure 4.2. In addition to this, we ablate the choice of
the pre-trained audio encoder, and we compare Whisper-medium [181] with
WavLM Large [43] (diamond and cross markers, respectively). Both en-
coders have around 300M parameters. We also report the WER obtained
with (black outline’s marker) and without (white outline’s marker) LoRA at
the LLM side. In Figure 4.2, we can observe the following trends: 1) adding
LoRA to the LLM is highly beneficial regardless of the LLM and encoder
used. For example, for TinyLlama + WavLM/Whisper, we can improve the
performances from WERs of 4.04/3.81% to 2.31/1.70%. A similar trend is
noticed for Llama2-7B, albeit the gain is reduced. 2) The choice of the en-
coder is also crucial, and this trend becomes more evident when LoRA is
not used. This is because better encoded representations enhance the LLM’s
ability to comprehend, especially in scenarios without LoRA, which typically
assists the LLM in aligning the encoded speech features with the pre-learned
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Table 4.2: WER results for different configurations of Llama-AVSR for the
VSR task. “/” means LoRA is not used.

Encoder LoRA Position LLM

Tiny-Llama Llama3.1-8B

AV-HuBERT / 30.2 28.4
AV-HuBERT LLM 29.2 26.9
AV-HuBERT LLM + enc 28.3 25.3
RAVEn LLM + enc 34.2 32.4

textual space. 3) We observe similar performance when LoRA and Whisper
are used among the three biggest LLMs, although LLama3.1-8B surpasses
Llama2-13B while using almost half as many parameters. Finally, we high-
light how a smaller and less powerful LLM such as TinyLLama can surpass
Llama2-7B and approach Llama3.1-8B when the right configuration is set,
showcasing the importance of the audio encoder and LoRA module.

For VSR, we compare two video encoders: AV-HuBERT [196] and RAVEn
[83]. Since the LoRA module is applied both to the LLM and video encoder,
we study 3 configurations: 1) no LoRA module is applied, 2) the LoRA mod-
ule is added to the LLM, and 3) LoRA modules are applied to both. Table
4.2 shows that applying LoRA modules to both leads to gains of almost
3 points for both TinyLlama and Llama3.1-8B. Furthermore, AV-HuBERT
achieves much better performance than RAVEn. This could be attributed
to the fact that the hidden units discovered through clustering SSL features
(e.g., HuBERT [98], AV-HuBERT [196]) are closely related to linguistic in-
formation, such as phonemes. This relationship may allow the LLM to more
easily adapt the representations of cluster-based SSL models, compared to
others (e.g., RAVEn).

Efficiency-Performance Trade-off for ASR and VSR Tasks. Since
most of the computational load lies in the LLM, it is quite common to re-
duce the number of tokens. At the same time, the loss in resolution inevitably
results in a performance’s drop. Consequently, it is crucial to find a compro-
mise in terms of efficiency and performance. In this direction, we report the
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Figure 4.3: WER trend as a function of K for the ASR and VSR tasks.

WER by varying the compression rate K in the range of [1-5] for both the
ASR and VSR tasks. For ASR, a compression rate of 1 (i.e., no compres-
sion) means the LLM processes on average 584 audio tokens, while the LLM
processes 117 tokens for 5. Figure 4.3 shows that for the ASR task we can
compress the audio tokens up to a factor 5 without impacting performance,
consistently reducing the number of tokens processed by the LLM. Reason-
ably, for the 30h setting the pooling factor is more crucial as the model is
trained on substantially less data. For VSR, however, increasing K leads to
gradually worse results across all settings (the WER increase is around 2.5-3
points when pushing K to 5), indicating the need for a more careful balance
between efficiency and performance.

AVSR Ablation Studies. We study the optimal audio and video com-
pression rates for the AVSR task (433h setting). We use Whisper and AV-
HuBERT as audio and video encoders. We point out that the temporal
resolution of Whisper’s output features is 50 fps, whereas that of video fea-
tures is 25 fps. We report the results when tested with different acoustic noise
levels as well as in a clean setting (SNR level = ∞) in Table 4.3. Similar
to [151], we inject babble noise from the NOISEX dataset. We also include
the performance when the video modality is not included (i.e., ASR task)
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Table 4.3: Results of Llama-AVSR for various audio and video compression
rates in noisy conditions. ∞ means no noise is injected.

Compression Rate SNR Level (dB)

A V ∞ 5 2 0 -2 -5

3 / 1.1 3.0 6.5 12.3 23.4 63.1
2 4 1.0 2.3 3.9 4.5 10.0 18.2
3 3 1.1 2.2 3.9 4.4 10.0 17.6
4 2 0.9 2.2 3.8 4.2 9.5 16.9
4 1 0.9 2.3 3.7 4.2 9.5 16.4

and we see that the performance highly deteriorates as the noise increases.
Instead, the additional use of the video tokens is beneficial as it compensates
for the noisy audio tokens. The best configurations suggest that Llama-AVSR
can tolerate higher compression rates for the audio tokens (up to 4) compared
to video tokens, both for the clean and noisy settings. This is supported by
the results presented in Figure 4.3, which revealed that audio tokens can
tolerate a higher K compared to video, and by the fact that in extreme noisy
conditions (SNR level = −2/5 dB) the LLM relies more on video tokens. Fi-
nally, we find that without compressing the video tokens (i.e., the last row),
we obtain no performance gain except in the case of severe noise conditions.

4.6 Final Remarks

In this work, we present Llama-AVSR, a Multimodal LLM that leverages
pre-trained audio/video encoders and an LLM for the tasks of ASR, VSR,
and AVSR. By training only lightweight projectors and LoRA modules, we
endow a pre-trained LLM with audio and visual speech recognition abilities
and understanding. Llama-AVSR achieves new state-of-the-art results on the
LRS3 dataset for the tasks of ASR and AVSR, and comparable performance
with previous works for VSR. We also shed light on the key factors that
contribute to the powerful results obtained by Llama-AVSR: the choice of the
pre-trained encoders and LLM, the use of LoRA modules, and the optimal
audio and video compression rates to balance efficiency and performance.
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Conclusion

In this thesis, we have explored how to transfer and adapt the knowledge
of pre-trained models in the speech domain and beyond. We have discussed
the benefits and limitations of full fine-tuning, showcasing its potential draw-
backs in terms of computational cost and preservation of prior knowledge in
different contexts.

To address these challenges, we propose several innovative techniques.
We start by defining a class-incremental learning setting for the tasks of spo-
ken language understanding (SLU) and acoustic scene classification. For
SLU, we propose multiple techniques combining the principles of experi-
ence replay and knowledge distillation to mitigate catastrophic forgetting
for encoder-classifier models [27] and seq2seq auto-regressive models (i.e.,
encoder-decoder) [32]. In the audio domain, experience replay is combined
with mutual information to learn both task-specific and task-agnostic knowl-
edge [239].

Then, we focus on adapting efficiently large pre-trained audio and speech
foundation models to several downstream tasks. To do so, we introduce a
new framework whereby we can study the performance achieved by differ-
ent PETL methods on multiple audio and speech benchmarks. Furthermore,
to enhance the existing PEFT methods we propose two novel methods: 1)
we advance a new adapter design that exploits the convolution module of
the conformer architecture to boost the performance while keeping the pa-
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rameter’s count minimal [29]. The key ingredient is the introduction of the
depthwise convolution that captures spatial correlations. This new adapter
module allows us to obtain on average better performance results than full
fine-tuning the model whilst updating only 0.29/0.59% parameters com-
pared to it. 2) We leverage the Mixture of Experts (MoE) paradigm to scale
the number of adapters while keeping the computational cost limited as well
as updating only a small fraction of the parameters. In this way, we show
that our proposed SMoA method combines the benefits of both MoE and
PETL to outperform the baseline with a single adapter.

Finally, we propose Llama-AVSR, a new multimodal LLM with strong
audio-visual speech recognition abilities to carry out the tasks of ASR, VSR,
and AVSR. It leverages pre-trained audio and video encoders to produce
modality-specific tokens which, together with the text tokens, are processed
by a pre-trained LLM (e.g., Llama3.1-8B) to yield the resulting response
in an auto-regressive fashion. In this way, we are capable of adapting the
knowledge of unimodal pre-trained models (audio, video, and text) to build
a multimodal system that processes all the modalities at the same time.
Llama-AVSR pushes the boundaries of audio-visual speech recognition by
setting new state-of-the-art results in the largest audio-visual benchmark,
LRS3 [4]. Interestingly, the parameter-efficient transfer learning leitmotiv is
also present in Llama-AVSR since the all pre-trained models are kept frozen
and just equipped with lightweight LoRA modules to facilitate the multi-
modal alignment.

5.1 Future Directions

We propose several promising avenues for future research to further enhance
our results.

Combining Continual Learning with PETL and MLLMs. A com-
pelling research direction involves integrating continual learning with PETL
and MLLMs. This would combine together the three main topics of this
thesis. A suitable application for this scenario is multi-lingual audio-visual
speech recognition, where the MLLM must learn multiple languages sequen-
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tially. To mitigate catastrophic forgetting, we can equip the model with a
novel pool of task-specific prompts or adapter modules.

Improving Visual Feature Representations. While Llama-AVSR
sets new state-of-the-art performance results for ASR and AVSR tasks, a
performance gap persists in VSR compared to certain state-of-the-art meth-
ods. We speculate that employing a simple linear projector to map video
tokens into the LLM space may not be optimal, necessitating a more sophis-
ticated design. Recent research has explored advanced projector techniques.
For example, [34] introduces two locality-enhanced projectors that preserve
local visual feature context efficiently. Another interesting line of research
leverages feature representations from multiple layers of the visual encoder,
rather than solely relying on the final layer output, enabling the LLM to
process multi-granularity visual features [26,242].

Better Compression Techniques and Model Scaling. We have
observed that Llama-AVSR’s performance is sensitive to the number of pro-
cessed tokens. Excessive compression can significantly degrade WER results.
Therefore, investigating advanced compression techniques that minimize to-
ken count while preserving performance is essential for faster inference. Fur-
thermore, our findings indicate that larger LLMs yield superior results. This
motivates the exploration of knowledge distillation techniques to bridge the
performance gap between LLMs of varying sizes, thereby enabling the de-
ployment of powerful LLMs even in resource-constrained scenarios.
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